
Contents lists available at SciVerse ScienceDirect

Journal of Statistical Planning and Inference

Journal of Statistical Planning and Inference ] (]]]]) ]]]–]]]
0378-37
http://d

n Corr
E-m

Pleas
surro
journal homepage: www.elsevier.com/locate/jspi
A Bayesian test of independence in a two-way contingency
table using surrogate sampling

Balgobin Nandram a,n, Dilli Bhatta a, Joe Sedransk b, Dhiman Bhadra c

a Department of Mathematical Sciences, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
b Department of Statistics, Case Western Reserve University, 335 Euclid Avenue, Cleveland, OH 44106, United States
c Production and Quantitative Methods Area, Indian Institute of Management Ahmedabad, Gujarat 380015, India
a r t i c l e i n f o

Article history:
Received 9 May 2012
Received in revised form
22 December 2012
Accepted 6 March 2013

Keywords:
Bayes factor
Chi-squared test
Cluster table
Rao–Scott approximations
Surrogate samples
Sampling-based method
Total table
58/$ - see front matter & 2013 Elsevier B.V.
x.doi.org/10.1016/j.jspi.2013.03.011

esponding author.
ail addresses: balnan@wpi.edu (B. Nandram)

e cite this article as: Nandram, B.,
gate sampling. Journal of Statistica
a b s t r a c t

We consider a Bayesian approach to the study of independence in a two-way contingency
table which has been obtained from a two-stage cluster sampling design. If a procedure
based on single-stage simple random sampling (rather than the appropriate cluster
sampling) is used to test for independence, the p-value may be too small, resulting in a
conclusion that the null hypothesis is false when it is, in fact, true. For many large complex
surveys the Rao–Scott corrections to the standard chi-squared (or likelihood ratio) statistic
provide appropriate inference. For smaller surveys, though, the Rao–Scott corrections may
not be accurate, partly because the chi-squared test is inaccurate. In this paper, we use a
hierarchical Bayesian model to convert the observed cluster samples to simple random
samples. This provides surrogate samples which can be used to derive the distribution of
the Bayes factor. We demonstrate the utility of our procedure using an example and also
provide a simulation study which establishes our methodology as a viable alternative to
the Rao–Scott approximations for relatively small two-stage cluster samples. We also
show the additional insight gained by displaying the distribution of the Bayes factor rather
than simply relying on a summary of the distribution.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

We consider a Bayesian test of independence for a two-way contingency table which arises with data from a two-stage
cluster sampling design. Due to the resulting intracluster correlation, the usual multinomial sampling scheme is no longer
appropriate. Specifically, the standard chi-squared or likelihood ratio test can fail. Various adjustments to these tests have
been proposed to account for a cluster sampling design. One of these is the Rao–Scott corrections which are now
implemented in various statistical packages such as SAS. These corrections are based on normal approximations and
moment-matching principles, and they perform quite well for large complex surveys. However, for a two-stage cluster
sampling design with not too many clusters and small expected cell counts, the performance of these adjusted tests may be
sub-optimal (i.e., they can result in misleading p-values). We propose a hierarchical Bayesian model to provide more
accurate tests of independence in two-way contingency tables. While we consider a fairly simple sample design, the
methodology we propose is general and can be extended to more complex survey designs and contingency tables.

Let fnjk, j¼ 1,…,r,k¼ 1,…,cg denote the cell counts in a r � c contingency table and let n¼∑r
j ¼ 1∑

c
k ¼ 1njk denote the total

sample size. The marginal totals for the jth row and kth column are, respectively, nj� ¼∑c
k ¼ 1njk, j¼ 1,…,r, and n�k ¼∑r

j ¼ 1njk,
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k¼ 1,…,c. Let S¼rc denote the total number of cells and πjk the cell probability for the ðj,kÞth cell, where ∑r
j ¼ 1∑

c
k ¼ 1πjk ¼ 1,

pj ¼∑c
k ¼ 1πjk and qk ¼∑r

j ¼ 1πjk. The independence hypothesis states that πjk ¼ pjqk, j¼ 1,…,r, k¼ 1,…,c, where
∑r

j ¼ 1pj ¼∑c
k ¼ 1qk ¼ 1. Assuming random sampling, the Pearson chi-squared and the likelihood ratio statistics are,

respectively,

X2 ¼ n∑
jk

njk−
nj�n�k
n

� �2�
nj�n�k, G2 ¼ 2n∑

jk
ðnjk=nÞ log

njk

nj�n�k=n

� �
,

where nj�, j¼ 1,…,r and n�k, k¼ 1,…,c, are positive. It is well known that both X2 and G2 have the same asymptotic chi-
squared distributions with ðr−1Þðc−1Þ degrees of freedom (as n-∞ with S fixed). For a complex sample design (e.g., two-
stage cluster sampling, stratified multistage cluster sampling, etc.), both X2 and G2 have ‘skewed’ distributions, and
alternative methods are needed.

When there is a clustering effect, the units in a cluster are, in general, positively correlated leading to a smaller effective
sample size and therefore larger variability in the estimates of the cell probabilities. This will evidently result in larger
p-values than what would be obtained under simple random sampling (e.g., see Brier, 1980; Bedrick, 1983; Holt et al., 1980;
Scott and Holt, 1982).

Rao and Scott (1981, 1984) have studied this problem very carefully and obtained simple corrections to the standard X2

and G2 statistics, not only for the test of independence for two-way contingency tables arising from two-stage cluster
sampling but essentially for any complex sampling design. Their procedure is asymptotic and nonparametric in nature, and
therefore, very general. While we do not attempt such generality in this paper, we present a method to overcome limitations
in the Rao–Scott methodology. Moreover, our approach can be extended to more complex scenarios. The Rao–Scott
corrections are obtained through design effects. A design effect is the ratio of the variance of a statistic under a complex
sampling design to that under simple random sampling. For two-stage cluster sampling, these design effects can be much
larger than one, thereby having a large impact on the standard chi-squared statistic. As a by-product of our methodology we
obtain a Bayesian analogue of these design effects.

Rao and Scott (1981, 1984) show that, under very general complex designs, X2 and G2 have the same asymptotic
distribution. Let θ

∼
¼ ðθ11,…,θr−1,c−1Þ′, where θjk ¼ πjk−πj�π�k, Pr ¼ ðπ1�,…,πr−1,�Þ′ and Pc ¼ ðπ�1,…,π�,c−1Þ′. Let V denote the

covariance matrix of θ̂
∼
under the null hypothesis of independence and let V̂ denote an estimator of V; V̂ can be complex

as it can involve survey weights and other design features. If the entire data set is available, V̂ can be obtained using
linearization or a resampling method (e.g., bootstrap or jackknife). Let π̂ jk ¼ njk=nj�n�k denote the MLE of πjk under
multinomial sampling with corresponding notations such as θ̂

∼
, P̂ r , P̂ c and V̂ . Let δg ,g¼ 1,…,κ¼ ðr−1Þðc−1Þ denote the

eigenvalues of ðP−1
r ⊕P−1

c ÞV where ⊕ is the usual direct matrix product; the δg are known as generalized design effects, a
phrase originally coined by Rao and Scott (1981). Assuming that the central limit theorem holds, Rao and Scott (1981, 1984)
show that, asymptotically, X2 ¼∑κ

g ¼ 1δgZ
2
g ¼ G2, where the Zg are independent standard normal random variables. Let δ̂g be

the consistent estimators of δg , g¼ 1,…,κ, and δ̂ be the same for δ ¼∑κ
g ¼ 1δg=κ. Then, the effective sample size in the

complex survey equivalent to simple random sampling is ~n ¼ n=δ, and the Rao and Scott (1981) adjusted X2 and G2 are

X
2 ¼ ~n∑

jk
njk−

nj�n�k
n

� �2�
nj�n�k, ~G

2 ¼ 2 ~n∑
jk
ðnjk=nÞ log

njk

nj�n�k=n

� �
:

For a two-stage cluster sampling design, ~n can be much smaller than n depending on the intra-cluster correlation. Rao and
Scott (1981) obtained a first order approximation by matching first moments and a second order approximation by
matching the first two moments using Satterthwaite's procedure, both ignoring the sampling variation in V̂ .

A third approximation, an adjustment which uses the degrees of freedom in the variance estimate to account for
sampling variation in V̂ and other parameters, is more accurate than the first two methods; see Thomas and Rao (1987), Rao
and Thomas (1989) and Thomas et al. (1996). However, the first order approximation is typically used in practice (e.g., SAS
Proc Surveyfreq Version 9.2) and can be calculated using information on the standard errors of the cell probabilities and
marginal proportions which are generally available (e.g., see Bedrick, 1983). The Rao–Scott corrections are very useful and
practical for large complex surveys.

However, for smaller complex surveys (i.e., when expected cell counts are less than 5), the asymptotic distributions of
both X

2
and G

2
can be grossly incorrect and hence their applicability is questionable. The Rao–Scott corrections are not

constructed to deal with small expected cell counts. Our objective is to provide a methodology to permit appropriate
analyses for two-way tables arising from a two-stage cluster sampling design.

In two-stage cluster sampling, a sample of ℓ clusters (primary sampling units or psu's) is selected and within the ith
sampled cluster, a sample of ni units (secondary sampling units or ssu's) is selected. Let nijk denote the counts in the ðj,kÞth
cell of the r � c table constructed from the ith cluster; we call this table the ith cluster table. Analogously, let njk ¼∑ℓ

i ¼ 1nijk be
the cell counts for the ðj,kÞth cell of the table of total counts. We will call the table of total counts the total table and in our
method we assume that we have information from all the cluster tables. Interest is on a test of independence of two
categorical variables in the r � c total table. However, analysis of only the total table will not account for the clustering effect
and the test of independence will be misleading. Although the first order Rao–Scott approximation requires only the total
table and the average design effect, the (preferred) second order Rao–Scott approximation essentially requires information
from all ℓ tables.
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There are two approaches to obtain a test of independence of two categorical variables when data are available from a
complex survey. First, one can use the effective sample size under simple random sampling. This is exactly what the Rao–
Scott approximations do. Second, one can adopt a model that is appropriate when there is random sampling by adjusting
the parameters to account for clustering. Here, we adjust the usual multinomial model for the cell counts in the ith cluster
by multiplying the population cell probabilities, πs, by quantities, αis, representing the clusters (i) and cells (s). We use a
hierarchical model for the αis to accommodate intracluster correlation. We then use this model to make inference for the
population cell probabilities (i.e., the πs). This, in turn, permits us to draw samples which are surrogates for the counts of the
observed total table. That is, each of these surrogate samples is a data set that can be regarded as a simple random sample
from the superpopulation and is part of the equivalence class associated with the observed cluster sample. Dong et al. (2011)
has a related idea for converting a complex sample to a simple random sample when multiple surveys are combined.

The idea is to simulate a large sample of total tables under simple random sampling, and compute the Bayes factor for a
test of independence from each simulated table. A summary of the distribution of the Bayes factor is used to perform the
Bayesian test of independence. Surrogate sampling has been used by Nandram (2007) to convert data obtained through a
selection bias mechanism to provide equivalent data chosen using simple random sampling. While we present methodology
for two stage cluster sampling, a special case, the approach is quite general. We start with a model appropriate for simple
random sampling and elaborate it to accommodate the more complex sample design. Next, we make inference for the
(population) parameter, θ, of the initial model (i.e., draw M′ samples from the posterior distribution of θ). Then we use
θð1Þ,…,θðM′Þ to draw simple random samples consistent with the observed data. The data from these simple random samples
are then used to make the required inferences (e.g., to test independence in a contingency table using a Bayes factor).

Finally, we note that the Bayes factor (Kass and Raftery 1995) is sensitive to prior specifications. Nandram and Choi
(2007) discussed this issue and reverted to a Bayesian estimation procedure to do the test since it is well known that
estimation is relatively less sensitive to moderate changes in the specifications of the hyperprior distribution. However, in
our case the Bayes factor will not be sensitive to small changes in the uniform prior because the cell counts of the total table
are expected to be much larger than zero (although one or two cells can have zero counts).

We provide a Bayesian test of independence when data are available from the cluster tables. Our main objective is to
obtain a Bayesian method that maintains the simplicity of the Rao–Scott method and is more accurate. In Section 2, we
describe the Bayesian test of independence for the two categorical variables. In Section 3, we show how to compute the
Bayes factor and its distribution from surrogate samples. In Section 4, we present a real example and a simulation study. We
also compare our method to the Rao–Scott approximations. Section 5 has concluding remarks.
2. Hierarchical Bayesian model

We study independence of two categorical variables when data are obtained from a clustered superpopulation in which
each unit has exactly one of the S characteristics. In Brier's (1980) model, given the cell probabilities indexed by the cluster
indicators, the cell counts are assumed to have a multinomial distribution. To accommodate the cluster effects, these cell
probabilities are assigned the same Dirichlet distribution with independence over the clusters. Thus, the standard
multinomial–Dirichlet model provides the same design effect for the estimator of each cell probability of the two-way
table (Brier, 1980). We make an adjustment to the standard multinomial–Dirichlet model to get different design effects for
each of the estimators of the cell probabilities of the r � c table and, therefore, any linear combination of these cell
probabilities (e.g., marginal probabilities), if required.

A sample of the clusters is taken and, in turn, a sample of the units within each sampled cluster is taken. We assume that
the number ℓ of clusters sampled is small compared to the number of clusters in the population, and the total number of
units in each cluster is much larger than the cluster sample size. Our results hold for any ignorable two-stage sample design
where the data are concordant with the model in (2)–(5) below; see Sugden and Smith (1984). We assume that there are
data for all ℓ cluster tables. The probability that a unit has the sth characteristic within the ith cluster of the superpopulation
is assumed to be αisπs, i¼ 1,…,ℓ, s¼ 1,…,S. Here, πs,s¼ 1,…,S, are the cell probabilities and the αis correct for cluster effects.

We use a hierarchical Bayesian model to obtain the surrogate samples. This model is used to convert the total table
obtained from the two-stage cluster sampling design to a surrogate total table which behaves as a table obtained from a
simple random sampling design. Our method gives a large number of replicates of the total table from an output analysis.
Then, we can calculate the Bayes factor for each total table, thereby providing a distribution of the Bayes factor from which
we can use a summary statistic such as the mode.

We string out the counts in the total table to an array of S cells (i.e., ns,s¼ 1,…,S). If we assume simple random sampling,
our Bayesian model is

n
∼
jπ
∼
∼Multinomialðn,π

∼
Þ,

π
∼
∼Dirichletð1

∼
Þ, ð1Þ

where n
∼
¼ ðn1,…,nSÞ, π∼ ¼ ðπ1,…,πSÞ, n¼∑S

s ¼ 1ns and 1
∼
is a vector of S ones. We call this model with simple random sampling

MSRS. Typically, the total table will have large counts relative to the cluster tables, so that the uniform prior is approximately
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noninformative (i.e., the posterior mode is the same as the maximum likelihood estimator). It is possible to have a few cells
with zero counts, but most of the cell counts are expected to be larger than zero.

We take care of the clustering by assuming that

n
∼i
ja
∼i
∼indMultinomialðni,a∼i

Þ, ð2Þ

where n
∼i
¼ ðni1,…,niSÞ, ni� ¼∑S

s ¼ 1nis and ais ¼ αisπs, i¼ 1,…,ℓ, s¼ 1,…,S. In (2) we have the constraints
f∑S

s ¼ 1αisπs ¼ 1, i¼ 1,…,ℓ,∑S
s ¼ 1πs ¼ 1,αis > 0,πs > 0g. Here, the αis are used to adjust for the clustering. We need a test of

independence based on the πs.
A priori we take,

αisjτs,ν∼indGammaðτs,τsνÞ, s¼ 1,…,S ð3Þ

and

π
∼
∼Dirichletð1

∼
Þ: ð4Þ

Note that in ais ¼ αisπs, neither the αis nor the πs are identifiable. This is true because the number of cells in the ith cluster
table is S while the number of parameters corresponding to the ith cluster is 2ðS−1Þ. Thus, we specify the τs to allow both αis
and πs to be identifiable.

We note two important features of this model. First, a model for simple random sampling is a special case of ours. This is
easily seen by setting αis≡1. Second, by construction, the model gives a positive correlation among the units in a cluster and
this correlation varies with the cell of the contingency table. To show this, let Iisj ¼ 1 if a jth ssu falls in the sth cell and Iisj ¼ 0
otherwise. Then, given αis and πs, Iisj∼

iidBernoulliðαisπsÞ. After some algebraic manipulation, it follows that
varðIisjÞ ¼ ðνS−1Þ=ν2S2, ν > S−1, independent of s, and covðIisj,Iisj′Þ ¼ f2τ−1s þðS−1Þ=Sg=SðSþ1Þν2, j≠j′, positive. Therefore,
corðIisj,Iisj′Þ ¼ fSð2τ−1s þ1Þ−1g=ðSþ1ÞðνS−1Þ, j≠j′, and by the Cauchy–Schwarz inequality the intracluster correlation lies in
ð0,1Þ provided that ν > S−1. Because the correlation varies with the cell of the contingency table, we have different design
effects for the estimators of the cell probabilities of the total table. Henceforth, we let νo ¼ S−1; so that ν > νo.

Finally, for ν, we assume a standard noninformative prior,

pðνÞ∝1=ν, ν > νo: ð5Þ
Note that the joint prior density of the αis, πs and ν must satisfy the constraints,
f∑S

s ¼ 1αisπs ¼ 1, i¼ 1,…,ℓ,∑S
s ¼ 1πs ¼ 1,αis > 0,πs > 0g. This is our model for a two-stage cluster sampling design and we will

call it MCSD.
It is easy to fit MSRS. In fact, under MSRS,

π
∼
jn
∼
∼Dirichletðn

∼
þ1

∼
Þ:

However, the Bayesian model under cluster sampling is much more complex partly because of the constraints and the
complexity of the ais.

Letting tis ¼ αisπs and π
∼ðSÞ

¼ ðπ1,…,πS−1Þ, the joint posterior density, obtained from Appendix A, is

pðt
∼
,π
∼ðSÞ

jn
∼
Þ∝f1−FℓbðAνoÞgA−ℓb

� ∏
ℓ

i ¼ 1
∏
S−1

s ¼ 1
tnis þ τs−1
is

� �
1− ∑

S−1

s ¼ 1
tis

� �niS þ τS−1

∏
S−1

s ¼ 1
πτss

� �
1− ∑

S−1

s ¼ 1
πs

� �τS
( )−1

2
4

3
5, ðt

∼
,π
∼ðSÞ

Þ∈ ~T
n

, ð6Þ

where FℓbðaÞ ¼
R a
0 tℓb−1e−t=ΓðℓbÞ dt is the cdf of a Gamma random variable,

~T
n ¼ ðt

∼
,π
∼ðSÞ

Þ : 0 < ∑
S−1

s ¼ 1
tis,tis > 0, ∑

S−1

s ¼ 1
πs < 1,tis,πs > 0, i¼ 1,…,ℓ,s¼ 1,…,S−1

� �
,

and

A¼ ∑
ℓ

i ¼ 1
∑
S−1

s ¼ 1
τs
tis
πs

þτS
1−∑S−1

s ¼ 1tis
1−∑S−1

s ¼ 1πs

 !( )
:

In Appendix A we also show that the joint posterior density is proper.

3. Computations, Bayes factor and specifications

Letting n
∼
denote the observed data from the total table and n̂

∼
the vector of surrogate sample counts for the total table, we

need to generate samples from

f SRSðn̂∼jn∼Þ ¼
Z

f SRSðn̂∼jπ∼,n∼Þf CLðπ∼jn∼Þ dπ∼: ð7Þ
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In (7) fSRS indicates that n̂
∼
are the surrogate cell counts appropriate to simple random sampling and fCL is the posterior

density of π
∼
using the model for the observed cluster data (MCSD). In Section 3.1 we show how to generate samples from

f CLðπ∼jn∼Þ using (6). We then show how to obtain the Bayes factor, and we also show how to specify the parameters τs,
s¼ 1,…,S. We use a computational method which ensures that our method is more accurate and at least as fast as the
methods of Rao and Scott (1981).

3.1. Outline of computations

As is apparent, the joint posterior density is complicated, and so we need a sampling based method to draw samples
from it. We obtain random draws from an approximation of the joint posterior density and then use the sampling
importance resampling (SIR) algorithm (Gelman et al., 2004, Chapter 12) to subsample these draws to obtain samples from
π
∼
jn
∼
; this gives us the required samples of π

∼
. Note that we are not using Markov chain Monte Carlo methods because we want

to avoid monitoring and make our algorithm at least as fast as the Rao–Scott methods.
Having obtained samples from the posterior density of π

∼
, we can now obtain samples from the distribution of the Bayes

factor. Let π
∼
ðhÞ, h¼ 1,…,M, denote theM samples from our MCSD (i.e., cluster model). Then, we draw n̂

∼

ðhÞ from the total table,

n̂
∼

ðhÞ ∼indMultinomialfn,π
∼
ðhÞg, h¼ 1,…,M:

Here, n̂
∼

ðhÞ is surrogate data because the original total table (observed data) has now been converted and a model for simple
random sampling is appropriate. Thus, we have M surrogates for the total table. Now, to compute M values of the Bayes
factor, we fit a model of association and a model of no association to the surrogate data, n̂

∼

ðhÞ
, h¼ 1,…,M, each surrogate in

turn. We take the model of association to be

n
∼
ðhÞ∼Multinomialðn,π

∼
Þ, π

∼
∼Dirichletðu

∼
Þ, h¼ 1,…,M, ð8Þ

where us ¼ :5, s¼ 1,…,S, for Jeffreys' prior (proper prior). Letting πn

jk ¼ πð1Þj πð2Þk , j¼ 1,…,r, k¼ 1,…,c, the model with no
association is

n
∼
ðhÞjπ

∼
ð1Þ,π

∼
ð2Þ∼Multinomialðn,π

∼
nÞ,

π
∼
ð1Þ∼Dirichletðv

∼
Þ and independently π

∼
ð2Þ∼Dirichletð ~w

w
Þ, ð9Þ

where vj ¼ :5, j¼ 1,…,r and wk ¼ :5, k¼ 1,…,c. It is worth noting that, while the computation of the Bayes factor requires
proper prior distributions, proper priors are not required in MCSD as long as the posterior density (6) is proper (as we have
shown in Appendix A). However, we do need a proper prior in (8). Inference should not be sensitive to moderate departures
from the Jeffreys' prior because the cell counts of the total table are expected to be large.

In Appendix D we present the Bayes factor for a test of independence for the total table. Matching notation with
Appendix D, the Bayes factor is given by

BF ðhÞ ¼ pasðn∼
ðhÞÞ=pnasðn∼

ðhÞÞ, h¼ 1,…,M,

where pasðn∼
ðhÞÞ and pnasðn∼

ðhÞÞ are, respectively, the marginal likelihoods under the models with association (as) and without
association (nas). (Note that larger values of BF ðhÞ give stronger evidence for association relative to no association
(independence).) In Appendix C, we show how to obtain the mode of the posterior distribution of the Bayes factor. It is
straightforward to obtain other summaries of the Bayes factor.

Thus, our method obtains M estimates of the Bayes factor and these estimates, in turn, provide an estimate of the
empirical distribution of the true Bayes factor. Our computations show that the entire procedure to obtain the M estimates
of the Bayes factor and its distribution takes less than 5 s on our 850 MHz computer for data from small two-stage cluster
sampling designs. Henceforth, we will mostly work with the log-Bayes factor. We use log-Bayes (base e) factors because the
marginal likelihoods can be large; see Kass and Raftery (1995) for a discussion of the log-Bayes factor.

We use two rules of thumb for our comparisons. The standard rule of thumb for p-values is as follows: (.05–.10),
borderline; (.025–.05), reasonably strong; (.01–.025) strong, (0–.01) very strong. Looking for evidence of association, the rule
of thumb of the log-Bayes factor is as follows: (0–1), not worth more than a bare mention (same as borderline); (1–3),
positive (same as reasonably strong); (3–5) strong, 5þ , very strong; see Kass and Raftery (1995).

Details about the computations are in Sections 3.2 and 3.3 while the numerical analysis is in Section 4.

3.2. Computational details

First, we need an approximation for (6). Using a heuristic argument we conjecture that an approximation which satisfies
four properties may be useful. First, the approximation should have some dependence between the tis and the πs; see (6).
Second, tis and πs should have similar forms. Third, the distributions of tis and πs should be functions of the data (i.e., the cell
counts of the cluster tables) to allow the data to have a direct influence on these distributions. Fourth, the computations of
the approximation must be fast and should not require any monitoring. To approximate the joint density of t

∼
and π

∼
, we take
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t
∼i
¼ ðti1,…,tiSÞ, i¼ 1,…,ℓ, given π

∼
and n

∼
to be independent, giving

paðt∼,π∼jn∼Þ ¼ ∏
ℓ

i ¼ 1
paðt∼ijπ∼,n∼Þ

( )
paðπ∼jn∼Þ, ð10Þ

where paðt∼ijπ∼,n∼Þ and paðπ∼jn∼Þ are determined next.
First, to obtain the approximation, paðπ∼jn∼Þ, we consider the posterior density under simple random sampling. Here,

pnðπ
∼
jn
∼
Þ∝ ∏

S

s ¼ 1
πn�s
s , ∑

S

s ¼ 1
πs ¼ 1:

Our intuition is that the correct posterior density under cluster sampling should be related to this posterior density under
simple random sampling. However, it should reflect the clustering through the design effects. Thus, we make two additional
adjustments to pnðπ

∼
jn
∼
Þ. First, by penalizing n�s, s¼ 1,…,S, we replace n�s by n�s=δs where δs are design effects, possibly all the

same as in Brier's method. A method for choosing the δs is given in Section 3.3. Second, to make this dependent on τs
(suggested by the term in πs in (A.5)), we add τs to n�s=δs to get the approximate posterior density, paðπ∼jn∼Þ

π
∼
jn
∼
∼Dirichletðd

∼
Þ, ð11Þ

where ds ¼ n�s=δsþτsþ1, s¼ 1,…,S.
Second, note that ignoring the term ð1−FðAνoÞÞA−ℓb and the constraints, the conditional posterior density in (6) is of the

form

pnnðt
∼
jπ
∼
,n
∼
Þ∝ ∏

ℓ

i ¼ 1
∏
S

s ¼ 1
tnis þ τs−1
is , tis > 0, s¼ 1,…,S, ∑

S

s ¼ 1
tis ¼ 1, i¼ 1,…,ℓ:

That is, approximately, t
∼i
jn
∼
∼indDirichletðn

∼i
þτ

∼
Þ. We allow this to be dependent on π

∼
by replacing nis with ni�πs. Thus,

approximately, t
∼i
jπ
∼
,n
∼
∼indDirichletðni�π∼s

þτ
∼
Þ. Adding unity to the Dirichlet parameters to increase computational stability, the

final approximation, paðt∼ijπ∼,n∼Þ, of the conditional posterior distribution of t
∼i
jπ
∼
,n
∼
is

t
∼i
jπ
∼
,n
∼
∼indDirichletðb

∼i
Þ, ð12Þ

where bis ¼ ni�πsþτsþ1, i¼ 1,…,ℓ, s¼ 1,…,S. Observe that (11) and (12) have similar forms.
We now show how to carry out the SIR algorithm. To obtain the probability of selecting each sampled iterate, we need to

study the ratio

Rðt
∼
,π
∼
jn
∼
Þ ¼

pðt
∼
,π
∼
jn
∼
Þ

paðt∼,π∼jn∼Þ
,

where pðt
∼
,π
∼
jn
∼
Þ and paðt∼,π∼jn∼Þ are given, respectively, in (A.5) and (10). Simplifying, we get

Rðt
∼
,π
∼
Þ ¼ C

f1−FℓbðAνoÞg∏ℓ
i ¼ 1½f∏S

s ¼ 1t
nis−ni�πs−1
is gDðni�π∼

þτ
∼
þ1

∼
Þ�

f∏S
s ¼ 1π

ns=δs þðℓþ1Þτs
s gAbℓ

, ð13Þ

where strictly 0 < πs < 1, 0 < tis < 1, Dð�Þ is the Dirichlet function and C is a proportionality constant. Note that, by
construction, Rðt

∼
,π
∼
Þ is bounded because both pðt

∼
,π
∼
jn
∼
Þ and paðt∼,π∼jn∼Þ are bounded.

We use 10% subsampling. We draw ~M ¼ 10,000 samples from the approximate joint posterior density in (10). This is
obtained using the composition rule by first drawing π

∼
from (11) and, in turn, drawing t

∼i
from (12). Letting

ΩðhÞ ¼ ðt
∼
ðhÞ,π

∼
ðhÞÞ,h¼ 1,…, ~M , the subsampling probabilities are Wh ¼ RðΩðhÞÞ=∑ ~M

h′ ¼ 1RðΩðh′ÞÞ,h¼ 1,…, ~M , where Rð�Þ is given in
(13). Then we sample 10% of the ~M samples without replacement to get M¼ :10 ~M samples. Thus, we finally have samples
from the posterior density of (t

∼
,π
∼
) in (6). We have checked that the largest Wh is not too close to unity, anecessity for good

performance of the SIR algorithm, in all our examples.

3.3. Specifications

We now show how to specify the design effects δs and the τs. Note that while the τs are part of MSCD, the δs only affect
the computations.

We state and prove an important lemma about the maximum likelihood estimator (MLE) of the parameters of a Gamma
distribution in Appendix B. We will use this lemma repeatedly to specify the hyperparameters and the tuning constants.

Let n′is, i¼ 1,…,ℓ, s¼ 1,…,S denote past data or data from a similar survey. We obtain estimates of αis from the cluster
tables with cell counts n′is, i¼ 1,…,ℓ, s¼ 1,…,S, adding 0.5 because of some zero cell counts. First, define
p̂is ¼ ðn′isþ :5Þ=ðn′i� þ :5SÞ, π̂ s ¼ ðn′�sþ :5Þ=ðn′þ :5SÞ and α̂ is ¼ p̂is=π̂ s, i¼ 1,…,ℓ, s¼ 1,…,S. We use this form for the α̂ is because
under (2) only, Eðn′is=n′i�Þ ¼ αisπs, i¼ 1,…,ℓ, s¼ 1,…,S. Therefore, removing the expectation on the left-hand side, we get
p̂is≈α̂isπ̂ s. Then, we take

α̂ is∼
iidGammaðτs,τsνÞ
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as in (3). Second, assuming momentarily that the τs are equal and letting A denote the arithmetic mean of the α̂ is, the MLE of
ν is ν̂ ¼ A−1 as in Appendix B. Then, for τs a ‘profile’ log-likelihood is obtained by replacing ν in the log-likelihood function by
A−1. For each τs with ν fixed at A−1, we obtain the MLE of τs by maximizing the profile log-likelihood function,

τs lnðτsÞ−τs lnðAÞþðτs−1Þ lnðGsÞ−τsAs=A−ln ΓðτsÞ, s¼ 1,…,S,

where As and Gs are the arithmetic and geometric means of α̂ is. By an argument similar to Appendix B, the MLE exists and is
unique. We use the Nelder–Mead algorithm to do the maximization.

We now show how to obtain the design effects for the computation. We consider the following simpler model for cluster
sampling:

n
∼i
jπ
∼i
∼indMultinomialðni�,π∼i

Þ and π
∼i
∼iidDirichletðμ

∼
ϕÞ,

where ni� is the number of ssu's in the ith cluster, π
∼i
¼ ðπi1,…,πiSÞ, ni� ¼∑S

s ¼ 1nis and μ
∼
and ϕ are to be specified. Note that

simple random sampling occurs in the limit as ϕ goes to infinity. The covariance matrix of n
∼
under cluster sampling is a

constant times the covariance matrix under simple random sampling; see Brier (1980). This constant is the design effect
and, letting n¼∑ℓ

i ¼ 1ni�, it is ð1=nÞ∑ℓ
i ¼ 1ni� ðni� þϕÞ=ð1þϕÞ	 


, a weighted average of ðni� þϕÞ=ð1þϕÞ, i¼ 1,…,ℓ.
To specify ϕ, we start by using a method of moments estimator for μ

∼
(i.e., μ̂s ¼∑ℓ

i ¼ 1nis=n, s¼ 1,…,S). These are
reasonably efficient estimators because they are formed from the total table. We obtain ϕ by maximizing the profile
log-likelihood of the multinomial–Dirichlet model,

∑
ℓ

i ¼ 1
∑
S

s ¼ 1
fln Γðnisþ μ̂sϕÞ−ln Γðμ̂sϕÞg−fln ΓðniþϕÞ−ln ΓðϕÞg

� �

over ϕ > 0. We denote the MLE of ϕ by ϕ̂ and it is easily obtained using the Nelder–Mead algorithm. Thus we take
δs ¼ ð1=nÞ∑ℓ

i ¼ 1ni�ððniþ ϕ̂Þ=ð1þ ϕ̂ÞÞ, s¼ 1,…,S, all equal.

4. Numerical analysis

We discuss an illustrative example. This example suggests certain features which are investigated further in a
simulation study.

We use the mode of the distribution of the Bayes factors, obtained from the surrogate total tables, for testing and the
interquartile range of these Bayes factors for gauging this evidence. We interpret the mode using the rule of thumb of Kass
and Raftery (1995), as discussed earlier. However, we share the philosophy that evidence cannot be measured by a single
test and other tests (e.g., Rao–Scott test) should also be used. It is not sensible to look at a single p-value or just the mode of
the distribution of the Bayes factor.

4.1. Illustrative example

To illustrate our methodology, we use data from the Third International Mathematics and Science Study (TIMMS). The
data consist of 2477 students (see Valliant et al., 2000, Appendix B.6). Here, the clusters are schools while the units are the
students. There are four strata, the Northeast, South, Central and West regions of the US. We consider three of the variables
in the survey, mathematics test scores (below average, average and above average), science test scores (below average,
average, above average) and the communities the students come from (village or rural area, outskirts of a town or city and
close to the center of a town or city). Within each stratum, we study the association between mathematics test scores (MTS)
and communities (COM) and science test scores (STS) and communities (COM), so there are eight examples. We assume that
the finite population is a sample from a superpopulation.

In Table 1 we present the total tables for the eight examples (E1–E4 for MTS versus COM and E5–E8 for STS versus COM
in each of the four regions). The number ðℓÞ of clusters changes considerably over regions as does the number of
Table 1
Features of the total table for each of the eight examples.

Example n ℓ ρ deff (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

E1 469 37 .56 11.8 44 57 5 83 71 5 63 136 5
E2 663 24 .33 6.85 49 74 1 107 151 13 93 164 11
E3 438 23 .34 7.39 44 47 8 54 44 3 56 167 15
E4 857 51 .33 6.62 25 17 0 157 134 13 205 294 12
E5 469 24 .54 11.46 63 38 5 105 47 7 70 124 10
E6 663 37 .31 6.45 61 56 7 117 141 13 117 145 6
E7 438 23 .35 7.67 53 44 2 67 30 4 95 133 10
E8 857 51 .33 6.63 34 7 1 181 112 11 226 272 13

Note: These are all 3�3 contingency tables; n is the number of observations; ℓ is the number of schools; ρ is the intracluster correlation and deff stands for
design effect. E4 has a zero cell and E2, E3, E7, E8 have some cell counts near zero.

Please cite this article as: Nandram, B., et al., A Bayesian test of independence in a two-way contingency table using
surrogate sampling. Journal of Statistical Planning and Inference (2013), http://dx.doi.org/10.1016/j.jspi.2013.03.011i

http://dx.doi.org/10.1016/j.jspi.2013.03.011
http://dx.doi.org/10.1016/j.jspi.2013.03.011
http://dx.doi.org/10.1016/j.jspi.2013.03.011


B. Nandram et al. / Journal of Statistical Planning and Inference ] (]]]]) ]]]–]]]8
observations. The intra-class correlations are moderately large and they change considerably over examples. The design
effects (deffs), obtained from Brier's model, are considerably larger than one. Thus, in all the examples, the cluster effect is
substantial. Some of the observed counts in the total tables do not exceed 5. This is noticeable in cell (1,3) (below average in
a town or city) in all examples except E3 and E6. In E4, cell (1,3) is 0 and so standard X2 and G2 tests are not really applicable.
In fact, for E4 the Rao–Scott first order test cannot be computed using SAS because it uses linearization or the jackknife to
estimate the covariance matrix. We are able to compute the Rao–Scott test because we use the bootstrap method. Rao–Scott
methods do not provide a sensible adjustment because in our case they correct X2 and G2 only for clustering, not for tables
with small cell counts.

The ‘posterior’ deffs for the individual cells are presented in Table 2. These are different from those in Brier's method (see
Section 3.3) and are computed using the diagonals of the posterior variance of π

∼
under the hierarchical Bayesian model

specified by (2)–(5) and the posterior variance under the model for simple random sampling specified by (1). These deffs are
considerably larger than 1. The average deffs, 9.01, 6.75, 5.91, 7.80, 8.34, 5.67, 6.71, 7.10 for E1–E8, are very similar to the
design effects obtained from Brier's method given in Table 1. But what is more important is that the deffs vary quite a bit
over the cells for all examples except E3 and E6. Thus, Brier's method is inappropriate except, perhaps, for E3 and E6. With
such large variations in deffs across the cells the Rao–Scott approximations are not expected to work so well. This is
particularly true in E4 in which cell (1, 3) has a design effect of 25.65 corresponding to the zero count. For completeness we
have also calculated the effective sample size (ESS), the sum of the ratios of the original cell counts of the total table divided
by the corresponding design effects. As can be seen in the last row of Table 2, these are considerably smaller than the
original sample size (see Table 1).

In Table 3, we present summaries of the Bayes factor obtained from our model. Our decision rule is the one presented in
Section 3.1 and applied to the mode of the distribution of the Bayes factor. For example, in example E1 the mode is 5.7 (the
Bayes factor is e5:7≈299) and according to Kass and Raftery (1995) this is a ‘very strong’ evidence against independence. For
comparison, we also present the p-values obtained from the standard chi-squared test and Rao–Scott first order (RSF) and
second order (RSS) approximations.

In example E1, RSF and RSS do not reject independence, while the chi-squared test and Bayes factor test show evidence
against independence. The very strong evidence against independence shown by the chi-squared test may be due to
ignoring the large cluster effect (ρ¼ :56, see Table 1); the effective sample size (67 in Table 2) indicates a degree of
sparseness. Except for E2 and E6, the Bayes factors show that there is evidence for a strong dependence between
Table 2
Bayesian design effects for each cell by example.

Example (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) ESS

E1 7.42 6.99 12.10 7.94 6.88 14.04 6.23 6.54 12.97 67
E2 5.17 5.09 17.05 5.31 5.18 5.85 5.20 5.35 6.56 126
E3 4.75 4.92 7.35 4.81 5.47 9.99 5.23 4.85 5.80 87
E4 5.32 5.69 25.65 5.22 5.04 6.14 5.37 5.14 6.60 164
E5 6.88 6.66 12.69 7.65 6.37 11.40 6.45 6.59 10.37 68
E6 4.93 4.59 7.51 5.07 5.06 6.13 5.02 5.30 7.40 130
E7 4.72 5.25 12.91 4.83 5.35 9.43 5.92 5.27 6.70 82
E8 5.12 7.45 17.59 5.31 5.13 6.59 5.39 5.22 6.09 161

Note: The cells are ðj,kÞ, j,k¼ 1,2,3. ESS stands for the effective sample size and it is the sum of the cell counts divided by the design effects, taken for the
total table.

Table 3
Comparison of the log-Bayes factors with the p-values by example.

Example
p-Values log-Bayes factor

χ2 RSF RSS Min Q1 Q2 Q3 Max Mode P N

E1 .001 .17 .14 −7.1 3.6 12.5 23.3 105 5.7 .81 9
E2 .247 .58 .66 −7.9 −2.8 1.1 7.2 60 −1.6 .89 9
E3 .000 .04 .02 −7.4 7.9 17.0 28.0 94 10.8 .69 7
E4 .001 .04 .02 −8.6 1.0 8.0 16.9 84 4.5 .76 9
E5 .000 .02 .01 −6.4 9.3 20.1 33.7 109 14.6 .66 7
E6 .240 .60 .69 −7.9 −1.3 3.4 10.2 55 −0.7 .95 9
E7 .000 .03 .01 −7.2 2.5 9.6 18.5 77 6.05 .71 9
E8 .000 .01 .00 −8.1 7.2 16.2 26.6 108 10.6 .66 7

Note: RSF and RSS denote, respectively, the first and second order Rao–Scott approximations; a bootstrap method is used to estimate the covariance matrix
in the Rao–Scott approximations.
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mathematics test scores and community and science test scores and community. It is interesting that the tests based on
chi-squared, RSF, RSS and Bayes factor agree in all examples except E1.

We also obtained the proportion, P, of estimated Bayes factors in the 1000 runs that are larger than the observed Bayes
factor under the (incorrect) simple random sampling in the observed total table. If the cluster sampling design was a simple
random sampling design, it seems reasonable that these Bayes factors should have a distribution symmetric around the
observed Bayes factor obtained from simple random sampling. Thus, under simple random sampling these P's should be
around .5. These are shown in the penultimate column of Table 3. However, these P's are significantly larger than .5, showing
that the clustering effect our model accounts for is substantial.

Because Bayesian estimation procedures are much less sensitive to prior specifications than Bayesian hypothesis tests, we
have considered an estimation procedure as well. Based on the hierarchical Bayesian model we have obtained 95% credible
intervals for the ratios, πjk=pjqk, j¼ 1,…,r, k¼ 1,…,c, where pj ¼∑c

k ¼ 1πjk and qk ¼∑r
j ¼ 1πjk. Note that there are S¼ rc¼ 9

credible intervals. Then, we have computed the number, N, of 95% credible intervals of πjk=pjqk containing 1 (e.g., see
Nandram, 2007, for a similar procedure). If some of these intervals do not contain 1, this provides some evidence against
independence. The values of N, presented in the last column of Table 3, show some evidence of dependence in examples E3,
E5 and E8. Of course, these intervals are much too wide for this latter procedure to be particularly useful. Nevertheless it is
sensible to consider it as well.

In Fig. 1, we present the distributions of the Bayes factor obtained from the 1000 estimates of the Bayes factor for each of
the eight examples. Looking at where most of the distribution lies, it shows that in E2 and E6 there is little evidence against
independence and in the other examples there is much stronger evidence against independence. Note that calculating the
distribution provides substantially more information than reporting a single summary but it is not done in practice.

In Table 4, we study the issue of sensitivity of the Bayes factor to the specification of τs,s¼ 1,…,SðS¼ 9Þ. We set τs ¼ ητ̂s
where we take η¼ :5,1,2 and τ̂s are the maximum likelihood estimates. The mode, median, the first and third quartiles and P
all decrease as η changes from 0.5 to 2. However, the evidence against independence does not change markedly. This is true
in all eight examples. We have also looked at sensitivity to the specification of the uniform prior for the model based on
simple random sampling applied to the surrogate total tables. Small variations in the Jeffreys' prior show very small changes
in the Bayes factor (e.g., changing .5 in the Jeffreys' prior to .10 or 1).
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Fig. 1. Plots of the empirical densities of the log-Bayes factors for the eight strata in the third grade example.
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Table 4
Sensitivity analysis of the log-Bayes factor with respect to τs , s¼ 1,…,9, by region (reg) and example.

reg η MTS vs. COM STS vs. COM

.5 1 2 .5 1 2

1 Mode 9.3 6.3 4.9 24.5 12.6 9.4
Median 13.8 12.4 10.3 25.6 21.1 15.6
IQR (4.8,25.4) (4.1,23.5) (2.9,19.0) (11.9,37.8) (9.9, 33.7) (6.9, 26.9)
P .84 .82 .79 .73 .66 .56

2 Mode −1.5 −1.7 −2.6 −0.9 −0.5 −0.5
Median 2.1 1.1 1.0 3.6 3.5 2.8
IQR (−2.3,7.7) (−2.5,7.3) (−3.1,6.9) (−1.5,10.8) (−1.5,10.7) (−1.7,9.1)
P .90 .90 .88 .95 .94 .94

3 Mode 14.0 11.1 10.1 5.8 4.9 2.5
Median 17.5 16.5 13.9 10.5 9.6 6.8
IQR (8.3,28.6) (7.5,27.0) (6.1,23.1) (3.6,21.2) (3.0,18.7) (1.0,14.8)
P .70 .68 .62 .74 .72 .62

4 Mode 3.7 4.2 1.8 12.6 12.1 9.2
Median 8.8 8.2 7.0 17.0 15.7 14.0
IQR (1.8,19.0) (1.6,16.9) (0.4,15.9) (8.3,28.4) (6.6,28.0) (5.1,24.1)
P .78 .78 .73 .70 .66 .62

Note: Each region has two examples (i.e., MTS vs. COM and STS vs. COM). We have used τs ¼ ητ̂ s , s¼ 1,…,9, where the τ̂ s are maximum likelihood estimates
and η¼ :5,1,2.
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4.2. Simulation study

We have performed a small simulation study to help understand these tests further. We consider three factors,
dependence between the two categorical variables (weak, strong), the table density of the cluster tables (low, medium) and
intracluster correlation (very small, small, moderate). The density of a total table is the total number of observations divided
by the product of the number of clusters and the number of cells (S¼9 for a 3�3 table). We have set the number of clusters,
ℓ at 35, and the table density, Δ at 2 and 4 giving total numbers of observations 630 and 1260 respectively.

Corresponding to the nine cells (3�3 contingency table), let ψ s ¼ ind, s¼ 1,5,9 (i.e., the diagonal cells (1, 1), (2, 2), (3, 3))
and ψ s ¼ 1, otherwise (off-diagonal cells) where ‘ind’ is to be specified. The cell probabilities are ψ s=∑S

s ¼ 1ψ s, s¼ 1,…,S.
When the ψ s are roughly the same (ind¼1), there will be independence and when the diagonal ψ s are larger than 1, there
will be dependence (ind¼2). For a 3�3 table with large cell counts, if the diagonal probabilities are twice the off diagonals,
there will be strong dependence (ind¼2). With intracluster correlation ρ, we set αs ¼ fð1−ρÞ=ρgψ s=∑S

s ¼ 1ψ s, s¼ 1,…,S. For
i¼ 1,…,ℓ we generate π

∼i
∼iidDirichletðα

∼
Þ to get the cell probabilities for the 35 cluster tables. We divide the total number of

observations into the clusters with sizes, ni, i¼ 1,…,ℓ, based on a multinomial distribution with equal cell probabilities.
Finally, the cluster tables are generated independently from multinomial distributions with total counts ni and cell
probabilities π

∼i
. We choose ρ¼ :01 ,. 10 ,. 30.

Thus, there are twelve (2�2�3) design points, and 100 cluster samples are generated at each design point. We perform
our computations exactly as for the Third Grade population and obtain both the p-values and the Bayes factors from our
model. We ‘average’ various quantities over the 100 replications at each design point. For example, in Table 5 the mode is
the average of the 100 modes.

In Table 5 we present numerical summaries from the simulation study. For these choices of Ind, Δ and ρ the conclusions
from using RSS or BF are similar. With Ind¼1 and ρ¼ :01 or .10 we do not expect any differences between the RSS test and
the log-Bayes test because these intra-class correlations are not large enough to offset the independence assumption.
Besides the sample sizes at each design point are relatively large. Perhaps some differences are expected at ρ¼ :30 but
should also be small because the sample sizes are relatively large. If ind¼2, we do not expect any difference between the
RSS test and the log-Bayes test because this is a relatively large dependence. Looking at the modes under dependence and
using the Kass and Raftery (1995) criteria (see Section 3.1) there is ‘very strong’ evidence for dependence which is essentially
the same inference under the RSS test or even the incorrect chi-squared test. As expected, the p-value of the RSS test is at
least as large as the p-value of the chi-squared test. But note that at ind¼2, Δ¼ 2 and ρ¼ :01, the p-value of the RSS test is
smaller than that for the chi-squared test but the difference is small (.005 vs. .001).

In addition, we observe a few interesting things. Under independence as ρ increases, both p-values decrease, but under
dependence these p-values increase (note the minor aberration at (Ind¼2, Δ¼ 2)). However, there is a clear advantage in
using the mode because it is the most plausible value, there is a measure of uncertainty (e.g., the interquartile range) and
symmetry between the ‘association’ and ‘no association’ cases. Unlike the behavior of the p-values, the evidence against
independence increases as ρ increases (for fixed Ind and δ) for both cases. For the six design points under independence, the
interquartile ranges are much narrower than their counterparts under dependence. While there are changes in the
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Table 5
Simulation: comparison of p-values and log-Bayes factors.

Ind Δ ρ Deff p-Values log-Bayes factor

χ2 RSS Mode Q1 Q2 Q3

1 2 .01 1.00 .964 .993 −5.86 −6.14 −4.50 −2.31
1 2 .10 1.50 .760 .899 −4.66 −5.35 −3.36 −0.51
1 2 .30 3.74 .350 .816 −1.48 −2.78 0.85 6.06
1 4 .01 1.00 .991 .999 −7.50 −7.61 −6.08 −3.95
1 4 .10 2.32 .700 .883 −5.62 −5.97 −3.25 0.38
1 4 .30 6.71 .280 .884 −0.73 −1.76 3.46 11.39
2 2 .01 1.15 .005 .001 6.16 2.47 8.44 15.58
2 2 .10 2.70 .006 .010 7.60 4.73 12.09 23.47
2 2 .30 6.12 .001 .044 11.19 8.23 19.87 35.79
2 4 .01 1.29 .000 .000 15.40 11.83 20.33 31.35
2 4 .10 4.38 .000 .002 25.39 15.33 30.57 47.62
2 4 .30 11.26 .001 .033 29.50 19.14 39.87 66.92

Note: Ind is the degree of dependence, Δ is table density, ρ is the intracluster correlation, deff is the design effect from Brier's method, RSS is the second
order Rao–Scott correction.
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magnitudes of the p-values and the log-Bayes factors, the changes in inference over the design points are small whether the
modes or the p-values are used.

In Fig. 2, we show the distributions of the estimated Bayes factors for the twelve design points. The distributions are
essentially unimodal; the locations of the mode tell us about the strength of the evidence against independence. We expect
the evidence to be weak under independence but the intra-cluster correlation blurs this vision. As the intra-cluster
correlation increases, we expect more spread, of course, and what we see is that the distributions move over to the right.
There is not much change in the distributions with the table density. Also, as we go from independence to dependence, the
distributions of the Bayes factor tend to be flatter with more spread.

Finally, we have performed an additional simulation study for a small sample size and a moderately large intracluster
correlation. Specifically, we have taken n¼50 and ρ¼ :50 with ℓ¼ 25 and different values of ind. For the total table and
ind¼3 most of the counts will be on the diagonal of the 3�3 categorical table with the off-diagonal elements tending to be
less than 5 and sometimes zero. For ind¼1 in the total table some cells will have counts less than 5 because of the strong
cluster effect within the cluster tables. With ρ¼ :50 there is an overall deff of 2 so that the effective sample size is just 25
with some cluster tables having an effective sample size of less than 2 observations.

One obvious problem that RSS faces is respect to the intracluster correlation. It is true that for cluster sampling the
p-value of the RSS test must be larger than that of the chi-squared test but this is false for two of the four examples
(summarized in Table 6), providing further evidence that RSS is inappropriate here. In all examples, the average deffs under
Brier's model are larger than 1 (just around 2). Using the criteria given at the end of Section 3.1, the inferences using RSS or
BF are different for ind¼1 and ind¼1.25. Here, the BF indicates no evidence for association (or borderline evidence for
independence) while RSS concludes that there is reasonably strong evidence for association (ind¼1.25) and borderline
evidence for association (ind¼1.00). The conclusions are similar for ind¼2.75 and ind¼3.00, somewhat stronger for RSS (i.
e., positive for BF and very strong for RSS).

5. Concluding remarks

We have proposed a method to test for independence in a r � c contingency table which is obtained from a two-stage
cluster sampling design. We have used a hierarchical Bayesian model and a sampling-based method to fit it. By making close
approximations to several densities we avoid using Markov chain Monte Carlo methods for inference. Specifically, we use
random samples from the approximate posterior density and subsample them using the SIR algorithm. Although ours is a
sampling based method it is at least as fast as the Rao–Scott methods. We use the Bayes factor to make inference about
independence. Relative to standard methods our approach provides additional insight by displaying the distribution of the
Bayes factor rather than simply relying on a single summary measure.

Our most important contribution may be the provision of surrogate random samples. This permits the analyst to use
standard software to carry out any analysis.

The Rao–Scott methods were developed to correct for design effects such as cluster effects, i.e., by correcting the
standard X2 and G2 statistics. They are ‘large sample’methods and work well when there are large cell counts. However, they
are less successful when there are small cell counts. An extreme case is a table with zero counts, in which case the X2 and G2

tests are not applicable. Consequently, the Rao–Scott methods do not apply either (since they are adjustments of the X2 and
G2 tests for design effects, not sparse tables). Our procedure can get around this problem when there are a few cells having
zero counts. However, by doing a sophisticated analysis, we have validated RSS for two-stage cluster sampling with many
examples, but there are examples where the use of RSS is inappropriate. Moreover, using the Bayes factor for inference
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Fig. 2. Simulation: plots of the empirical densities of the log-Bayes factors at twelve design points. The symbols are correlation (solid: ρ¼ :01, dotted:
ρ¼ :10, long dashed: ρ¼ :30), association (independence: ind¼1 and dependence: ind¼2) and table density (delta).
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Table 6
Simulation: comparison of the log-Bayes factors and the p-values by ind.

Ind p-Values log-Bayes factor

χ2 RSS Mode Q1 Q2 Q3

1.00 .0943 .0633 −0.63 −1.37 0.16 2.35
1.25 .0348 .0281 −0.49 −0.84 1.03 3.61
2.75 .0038 .0045a 1.11 0.37 2.73 5.80
3.00 .0032 .0042a 1.62 0.84 3.45 6.61

Note : See notes to Tables 3, 5. At each value of ind the number of clusters is ℓ¼ 25 and the total number of observations is n¼50. The intraclass correlation
is ρ¼ 0:50 giving an equivalent sample size of less than 25.

a χ2 < RSS.
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permits the analyst to give the strength of the evidence both ‘for’ and ‘against’ independence unlike the frequentist decision
approach which is directed to rejection of the null hypothesis of independence.

The methodology, described in this paper, is appropriate if there is an ignorable two-stage design and the model in
(2)–(5) fits the observed data. If the survey weights provide additional information, one may include them by modifying the
likelihood in (A.3) to

L1 ¼ ∏
ni

j ¼ 1
∏
S−1

s ¼ 1
ðαisπsÞI

n

ijs

� �
1− ∑

S−1

s ¼ 1
ðαisπsÞ

� �1−∑S−1
s ¼ 1 I

n

ijs
" #wij

for the ith cluster, where the survey weights, wij, are rescaled to sum to n, the total sample size, and j indexes the second
stage units with Inijs ¼ 1, if unit ij is in cell s, and Inijs ¼ 0, otherwise. Since

L1 ¼ ∏
S−1

s ¼ 1
ðαisπsÞ∑

ni
j ¼ 1wijI

n

ijs

� �
1− ∑

S−1

s ¼ 1
ðαisπsÞ

� �∑ni
j ¼ 1wijð1−∑S−1

s ¼ 1 I
n

ijsÞ

has the same form as in (A.3), the analysis is essentially the same as that provided in the paper. If the sample design is
informative, Pfeffermann and Sverchkov (2009) and Pfeffermann (2011) provide good coverage of most methods, but these
are limited for Bayesian analysis.

With an additional step the methodology is also appropriate if there is a stratified two-stage design. Considering H strata,
we simply need to add the subscript h,h¼ 1,…,H, to the variables in (2)–(5).

n
∼hi

ja
∼hi

∼indMultinomialðnhi,a∼hi
Þ, ð14Þ

where n
∼hi

¼ ðnhi1,…,nhiSÞ, nhi ¼∑S
s ¼ 1nhis and ahis ¼ αhisπs, h¼ 1,…,H, i¼ 1,…,ℓ, s¼ 1,…,S. In (14) we have the constraints,

∑sαhisπs ¼ 1, ∑sπs ¼ 1, αhisπs > 0 and πs > 0. Again the αhis are used to adjust for the clustering. A priori we take

αhisjτhs,νh ∼indGammaðτhs,τhsνhÞ,π∼∼Dirichletð1∼Þ, ð15Þ

and the νh are independent with

pðνhÞ∝1=νh, h¼ 1,…,H, ð16Þ
where τhs, h¼ 1,…,H, s¼ 1,…,S, are to be specified. To perform the surrogate sampling, we need the posterior density of π

∼
.

With minimal changes, our computational procedure will go through.
Finally, we note that in small complex surveys, most cluster tables will have many zero cells (e.g., contingency tables with

categorical variables having many levels). As noted above the problem of sparse total tables cannot be accommodated
within the Rao–Scott framework. However, it may be possible to do so within our framework. For example, a likelihood ratio
test of independence in a single contingency table with many sampling zeros is given by Nandram et al. (2012) assuming
simple random sampling. It will be useful to extend this work to complex surveys.

Appendix A. Joint posterior density

Letting S¼rc, the set of constraints is

T ¼ ðα
∼
,π
∼
,νÞ : ∑

S

s ¼ 1
αisπs ¼ 1, ∑

S

s ¼ 1
πs ¼ 1,αis > 0,i¼ 1,…,ℓ,πs > 0,s¼ 1,…,S,ν > νo

� �
:

Letting b¼∑S
s ¼ 1τs, the joint prior density is

pðα
∼
,π
∼
,νjτ

∼
Þ∝νℓb−1 ∏

ℓ

i ¼ 1
∏
S

s ¼ 1
ατs−1is e−ντsαis ,ðα

∼
,π
∼
,νÞ∈T : ðA:1Þ
Please cite this article as: Nandram, B., et al., A Bayesian test of independence in a two-way contingency table using
surrogate sampling. Journal of Statistical Planning and Inference (2013), http://dx.doi.org/10.1016/j.jspi.2013.03.011i

http://dx.doi.org/10.1016/j.jspi.2013.03.011
http://dx.doi.org/10.1016/j.jspi.2013.03.011
http://dx.doi.org/10.1016/j.jspi.2013.03.011


B. Nandram et al. / Journal of Statistical Planning and Inference ] (]]]]) ]]]–]]]14
In (A.1) we want to accommodate the constraints, ∑S
s ¼ 1αisπs ¼ 1,i¼ 1,…,ℓ, and ∑S

s ¼ 1πs ¼ 1. We have a convenient way of
doing so.

We transform αiS, i¼ 1,…,ℓ, to ϕi and πS to ϕ0 keeping all other random variables untransformed such that

∑
S

s ¼ 1
αisπs ¼ 1þϕi, i¼ 1,…,ℓ and ∑

S

s ¼ 1
πs ¼ 1þϕ0:

Our idea is to remove πS and αiS, i¼ 1,…,ℓ when ϕi, i¼ 0,1,…,ℓ are set to zero. Then, πS ¼ 1þϕ0−∑S−1
s ¼ 1πs and

αiS ¼ ð1þϕi−∑S−1
s ¼ 1αisπsÞ=ð1þϕ0−∑S−1

s ¼ 1πsÞ, i¼ 1,…,ℓ. Note that πS and αiS are all kept in ð0,1Þ.
The Jacobian of the transformation is ðj1þϕ0−∑S−1

s ¼ 1πsjÞ−ℓ and the joint prior density is

pðα
∼ðSÞ

,π
∼ðSÞ

,ϕ
∼
,νÞ∝νℓb−1 ∏

ℓ

i ¼ 1
∏
S−1

s ¼ 1
ατs−1is e−ντsαis

�

�
1þϕi− ∑

S−1

s ¼ 1
αisπs

1þϕ0− ∑
S−1

s ¼ 1
πs

0
BBB@

1
CCCA

τS−1

e−ντS ð1þϕi−∑S−1
s ¼ 1αisπsÞ=ð1þϕ0−∑S−1

s ¼ 1πsÞð Þ j1þϕ0− ∑
S−1

s ¼ 1
πsj

� �−1

3
77775,

0 < ∑
S−1

s ¼ 1
αisπs < 1, i¼ 1,…,ℓ, 0 < ∑

S−1

s ¼ 1
πs < 1, αisπs > 0, πs > 0, ν > νo:

Then, letting

~T ¼ ðα
∼ðSÞ

,π
∼ðSÞ

,νÞ : 0 < ∑
S−1

s ¼ 1
αisπs < 1, i¼ 1,…,ℓ, 0 < ∑

S−1

s ¼ 1
πs < 1,αisπs > 0,πs > 0,

�

s¼ 1,…,S−1,ν > νog,

pðα
∼ðSÞ

,π
∼ðSÞ

,νjϕ
∼
¼ 0

∼
Þ∝νℓb−1 ∏

ℓ

i ¼ 1
∏
S−1

s ¼ 1
ατs−1is e−ντsαis

�

� 1−∑S−1
s ¼ 1αisπs

1−∑S−1
s ¼ 1πs

 !τS−1

e−ντSðð1−∑
S−1
s ¼ 1αisπsÞ=ð1−∑S−1

s ¼ 1πsÞÞ 1− ∑
S−1

s ¼ 1
πs

� �−1
3
5, ðα

∼ðSÞ
,π
∼ðSÞ

,νÞ∈ ~T : ðA:2Þ

Henceforth, for convenience, we will denote this prior distribution by pðα
∼ðSÞ

,π
∼ðSÞ

,νÞ which, we note, is improper.
Now, the conditional distribution of n

∼
given ðα

∼ðSÞ
,π
∼ðSÞ

,νÞ∈ ~T is

pðn
∼
jα
∼ðSÞ

,π
∼ðSÞ

,νÞ ¼ ∏
ℓ

i ¼ 1
ni! ∏

S−1

s ¼ 1
ðαisπsÞnis=nis!

� �
1− ∑

S−1

s ¼ 1
αisπs

� �niS
,

niS!

" #
ðA:3Þ

nis≥0,∑S
s ¼ 1nis ¼ ni,i¼ 1,…,ℓ.

Then, using Bayes' theorem, the joint posterior density is

pðα
∼ðSÞ

,π
∼ðSÞ

,ν n
∼
Þ∝ ∏

ℓ

i ¼ 1
ni! ∏

S−1

s ¼ 1
ðαisπsÞnis=nis!

� �
1− ∑

S−1

s ¼ 1
αisπs

� �niS

=niS!

" #





�νℓb−1 ∏

ℓ

i ¼ 1
∏
S−1

s ¼ 1
ατs−1is e−ντsαis

�

� 1−∑S−1
s ¼ 1αisπs

1−∑S−1
s ¼ 1πs

 !τS−1

e−ντSðð1−∑
S−1
s ¼ 1αisπsÞ=ð1−∑S−1

s ¼ 1πsÞÞ 1− ∑
S−1

s ¼ 1
πs

� �−1
3
5, ðα

∼ðSÞ
,π
∼ðSÞ

,νÞ∈ ~T : ðA:4Þ

Note that in (A.4) αiS ¼ ð1−∑S−1
s ¼ 1αisπsÞ=ð1−∑S−1

s ¼ 1πsÞ and πS ¼ 1−∑S−1
s ¼ 1πs. Finally, because the prior density in (A.2) is

improper, the joint posterior density in (A.4) may be improper.
We next show that the joint posterior density in (A.4) is proper. We make the transformation tis ¼ αisπs, s¼ 1,…,S−1,

i¼ 1,…,ℓ, keeping the πs untransformed. The Jacobian of the transformation is ð∏S−1
s ¼ 1πsÞ−ℓ and the joint posterior density

becomes

pðt
∼
,π
∼ðSÞ

,νjn
∼
Þ ∝νℓb−1e−ν∑

ℓ
i ¼ 1ð∑S−1

s ¼ 1τsðtis=πsÞþ τSð1−∑S−1
s ¼ 1tisÞ=ð1−∑S−1

s ¼ 1πsÞÞ ∏
ℓ

i ¼ 1
∏
S−1

s ¼ 1
tnis þ τs−1
is

� �
1− ∑

S−1

s ¼ 1
tis

� �niS þ τS−1
"

� ∏
S−1

s ¼ 1
πτss

� �
1− ∑

S−1

s ¼ 1
πs

� �τS
( )−1

3
5, ðt

∼
,π
∼ðSÞ

,νÞ∈Tn,
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where

Tn ¼ ðt
∼
,π
∼ðSÞ

,νÞ : 0 < ∑
S−1

s ¼ 1
tis, ∑

S−1

s ¼ 1
πs < 1,tis,πs > 0,i¼ 1,…,ℓ,s¼ 1,…,S−1,ν > νo

� �
:

Now, assuming ℓb > 1 and letting FℓbðaÞ ¼
R a
0 tℓb−1e−t=ΓðℓbÞ dt, the cdf of a gamma random variable and integrating out ν,

we get

pðt
∼
,π
∼ðSÞ

jn
∼
Þ∝f1−FℓbðAνoÞgA−ℓb

� ∏
ℓ

i ¼ 1
∏
S−1

s ¼ 1
tnis þ τs−1
is

� �
1− ∑

S−1

s ¼ 1
tis

� �niS þ τS−1

∏
S−1

s ¼ 1
πτss

� �
1− ∑

S−1

s ¼ 1
πs

� �τS
( )−1

2
4

3
5,ðt

∼
,π
∼ðSÞ

Þ∈ ~T
n

, ðA:5Þ

where

~T
n ¼ ðt

∼
,π
∼
Þ : 0 < ∑

S−1

s ¼ 1
tis, ∑

S−1

s ¼ 1
πs < 1,tis,πs > 0,i¼ 1,…,ℓ,s¼ 1,…,S−1

� �
,

and

A¼ ∑
ℓ

i ¼ 1
∑
S−1

s ¼ 1
τs
tis
πs

þτS
1−∑S−1

s ¼ 1tis
1−∑S−1

s ¼ 1πs

 !( )
:

Since pðt
∼
,π
∼ðSÞ

jn
∼
Þ is finite on any compact subset of ~T

n

, the integral of pðt
∼
,π
∼ðSÞ

jn
∼
Þ over any compact subset of ~T

n

is finite. Thus,
the joint posterior density pðt

∼
,π
∼ðSÞ

,νjn
∼
Þ is proper.

Appendix B. A property of the gamma distribution

Let d1,…,dn∼
iidGammaðe,ef Þ. Let A¼∑n

i ¼ 1di=n and G¼ ð∏n
i ¼ 1diÞ1=n denote, respectively, the arithmetic and the geometric

mean of the di.

Lemma. The maximum likelihood estimator (MLE) of f is f̂ ¼ A−1 which is the unique solution of

lnðf̂ Þ−ψðf̂ Þ ¼ lnðA=GÞ, ðB:1Þ
where ψð�Þ is the digamma function.

Proof of Lemma. The log-likelihood function is

Δðe,f Þ ¼ nfe lnðf Þþe lnðeÞþðe−1Þ lnðGÞ−efA−lnðΓðeÞÞg:
Differentiating, we have

∂Δðe,f Þ
∂f

¼ ne
1
f
−A

� �
and

∂2Δðe,f Þ
∂f 2

¼−
ne

f 2
: ðB:2Þ

Using (B.2) it follows that the MLE of f is unique and is given by f̂ ¼ A−1.
Thus, the profile log-likelihood is

Δðe, f̂ Þ ¼ nfe lnðf̂ Þþe lnðeÞþðe−1Þ lnðGÞ−e−lnðΓðeÞÞg:
Differentiating, we have

∂Δðe, f̂ Þ
∂e

¼ n lnðeÞ−ψðeÞþ lnðG=AÞ� �
and

∂2Δðe, f̂ Þ
∂e2

¼ 1
e
−ψ ′ðeÞ, ðB:3Þ

where ψ ′ð�Þ is the trigamma function.
Then, because eψ ′ðeÞ > 1 for all positive real numbers e (Abramowitz and Stegun, 1972, Chapter 6), it follows from (B.3)

that the MLE of e is the unique solution of (B.1).

Appendix C. Mode of a kernel density estimator

Let x1,…,xn∼
iidf ðxÞ, where f(x) is an unknown density function. We need the mode of this density function based on a large

sample of size n. We use the Parzen–Rosenblatt kernel density estimator with a standard normal kernel and optimal
window width (Silverman, 1986), where

f̂ ðxÞ ¼ 1
nh

∑
n

i ¼ 1
ϕ

x−xi
h

� �
, −∞ < x < ∞, ðC:1Þ

and h is the optimal window width.
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Using differentiation,

f̂ ′ðxÞ ¼ −
1

nh3 ∑
n

i ¼ 1
ðx−xiÞϕ

x−xi
h

� �

and

f̂ ″ðxÞ ¼−
1

nh3
∑
n

i ¼ 1
1−

x−xi
h

� �2� �
ϕ

x−xi
h

� �
:

A necessary condition for a mode xn is that f̂ ′ðxnÞ ¼ 0 which gives

xn ¼ ∑
n

i ¼ 1
wfðxn−xiÞgxi, ðC:2Þ

where wfðxn−xiÞg ¼ ϕððxn−xiÞ=hÞf∑n
i ¼ 1ϕððxn−xiÞ=hÞg−1, i¼ 1,…,n (i.e., xn is a weighted average).

We use a simple iterative procedure to solve (C.2). Starting with the sample mean on the right side of (C.2), we update xn

and iterate the procedure. This procedure is very fast even though it can take a large number of iterations for convergence.
We need to check that f̂ ″ðxnÞ < 0. This is approximately true because f1−ððx−xiÞ=hÞ2g≈expf−ððx−xiÞ=hÞ2g which is positive. In
fact, it is easy to show that f̂ ″ðxnÞ≥−h−1; so it can be negative.

Alternatively, the global mode can be found by drawing samples from (C.1) and then finding the maximum of the values
of f̂ ðxÞ over these samples; this procedure is easy and fast. We have performed both procedures and they give virtually the
same answer; but the latter procedure is expected to work always (Robert and Casella, 1999, Chapter 5) for more complex
optimization procedures.

Appendix D. Bayes factor for a test of independence

For the r � c contingency table, we can consider two multinomial–Dirichlet models, one with association and the other
with no association.

The model with association is

n
∼
jπ
∼
∼Multinomialðn,π

∼
Þ and π

∼
∼Dirichletðu

∼
Þ, ðD:1Þ

where u
∼
is specified.

Letting πn

jk ¼ πð1Þj πð2Þk , j¼ 1,…,r, k¼ 1,…,c, the model with no association is

n
∼
jπ
∼
ð1Þ,π

∼
ð2Þ∼Multinomialðn, πn

∼
Þ,

π
∼
ð1Þ∼Dirichletðv

∼
Þ and independently π

∼
ð2Þ∼Dirichletðw

∼
Þ, ðD:2Þ

where π
∼
ð1Þ and π

∼
ð2Þ have r and c components, respectively, and v

∼
and w

∼
are specified.

Therefore, integrating out π
∼
ð1Þ and π

∼
ð2Þ from (D.2) and π

∼
from (D.1), it is easy to show that the marginal likelihood with

association (as) is pasðn∼Þ ¼ ðn!=∏r
j ¼ 1∏

c
k ¼ 1njk!ÞDðn∼þu

∼
Þ=Dðu

∼
Þ and with no association (nas) is

pnasðn∼Þ ¼ pasðn∼Þ
Dðn

∼
ð1Þ þv

∼
Þ

Dðv
∼
Þ

Dðn
∼
ð2Þ þw

∼
Þ

Dðw
∼
Þ

8<
:

,
Dðn

∼
þu

∼
Þ

Dðu
∼
Þ

9=
;, ðD:3Þ

where n
∼
ð1Þ ¼ ðn1:,…,nr:Þ′ and n

∼
ð2Þ ¼ ðn:1,…,n:cÞ′. Thus, using (D.3) the Bayes factor (BF) is given by

BF ¼ pasðn∼Þ=pnasðn∼Þ, ðD:4Þ

which provides evidence for association relative to no association. With Jeffreys' prior (i.e., elements of u
∼
, v
∼
and w

∼
are all 0.5)

there is no simplification to (D.3) or (D.4).
However, for the special case where u

∼
¼ 1

∼
, v
∼
¼ 1

∼
and w

∼
¼ 1

∼
(i.e., uniform priors), we have pasðn∼Þ ¼ ðrc−1Þ!n!=ðnþrc−1Þ! and

with no association (nas),

pnasðn∼Þ ¼ pasðn∼Þ
ðr−1Þ!ðc−1Þ!

ðrc−1Þ!
ðnþrc−1Þ!

ðnþr−1Þ!ðnþc−1Þ!
∏r

j ¼ 1nj�!∏c
k ¼ 1n�k!

∏r
j ¼ 1∏

c
k ¼ 1njk!

: ðD:5Þ

References

Abramowitz, M., Stegun, I.A., 1972. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover Publications, New York.
Bedrick, E.J., 1983. Adjusted chi-squared tests for cross-classified tables of survey data. Biometrika 70, 591–595.
Brier, S.S., 1980. Analysis of contingency tables under cluster sampling. Biometrika 67, 591–596.
Dong, Q., Elliott, M., Raghunathan, T., 2011. Combining information from multiple complex surveys. In: Proceedings of the Joint Meetings of the American

Statistical Association.
Please cite this article as: Nandram, B., et al., A Bayesian test of independence in a two-way contingency table using
surrogate sampling. Journal of Statistical Planning and Inference (2013), http://dx.doi.org/10.1016/j.jspi.2013.03.011i

http://refhub.elsevier.com/S0378-3758(13)00056-6/sbref1
http://refhub.elsevier.com/S0378-3758(13)00056-6/sbref2
http://refhub.elsevier.com/S0378-3758(13)00056-6/sbref3
http://dx.doi.org/10.1016/j.jspi.2013.03.011
http://dx.doi.org/10.1016/j.jspi.2013.03.011
http://dx.doi.org/10.1016/j.jspi.2013.03.011


B. Nandram et al. / Journal of Statistical Planning and Inference ] (]]]]) ]]]–]]] 17
Gelman, A., Carlin, J., Stern, H., Rubin, D., 2004. Bayesian Data Analysis, 2nd ed. Chapman & Hall, New York.
Holt, D., Scott, A.J., Ewings, P.D., 1980. Chi-squared tests with survey data. Journal of the Royal Statistical Society, Series A 143, 303–320.
Kass, R.E., Raftery, A.E., 1995. Bayes factor. Journal of the American Statistical Association 90, 773–795.
Nandram, B., Bhatta, D., Bhadra, D., 2012. A Likelihood Ratio Test of Quasi-independence for Sparse Two-way Contingency Tables. Technical Report,

Department of Mathematical Sciences, Worcester Polytechnic Institute.
Nandram, B., 2007. Bayesian predictive inference under informative sampling via surrogate samples. In: Upadhyay, S.K., Umesh Singh, Dipak K. Dey (Eds.),

Bayesian Statistics and its Applications. Anamaya, New Delhi, pp. 356–374 (Chapter 25).
Nandram, B., Choi, J.W., 2007. Alternative tests of independence in two-way categorical tables. Journal of Data Science 5, 217–237.
Pfeffermann, D., Sverchkov, M., 2009. Inference under informative sampling. In: Pfeffermann, D., Rao, C.R. (Eds.), Handbook of Statistics 29; Survey

Sampling: Design, Methods and Applications, vol. 29A. . North Holland, Amsterdam, pp. 455–487. (Chapter 39).
Pfeffermann, D., 2011. Modelling complex survey data: Why model? Why it is a problem? How can we approach it. Survey Methodology 37 (2), 115–136.
Rao, J.N.K., Scott, A.J., 1981. The analysis of categorical data from complex sample surveys: chi-squared tests for goodness of fit and independence in two-

way tables. Journal of the American Statistical Association 76, 221–230.
Rao, J.N.K., Scott, A.J., 1984. On chi-squared tests for multi-way tables with cell proportions estimated from survey data. Annals of Statistics 12, 46–60.
Rao, J.N.K., Thomas, D.R., 1989. Chi-squared tests for contingency tables. In: Holt, D., Skinner, C.J., Smith, T.M.F. (Eds.), The Analysis of Complex Surveys.

Wiley, New York.
Robert, C.P., Casella, G., 1999. Monte Carlo Statistical Methods. Springer, New York.
Scott, A.J., Holt, D., 1982. The effect of two-stage sampling on ordinary least squares methods. Journal of the American Statistical Association 77, 848–854.
Silverman, B.W., 1986. Density Estimation for Statistics and Data Analysis. Chapman & Hall, New York.
Sugden, R.A., Smith, T.F.M., 1984. Ignorable and informative designs in survey sampling inference. Biometrika 71, 495–506.
Thomas, D.R., Rao, J.N.K., 1987. Small sample comparisons of level and power for simple goodness of fit statistics under cluster sampling. Journal of the

American Statistical Association 82, 630–636.
Thomas, D.R., Singh, A.C., Roberts, G.R., 1996. A simple method for the analysis of clustered data. International Statistical Review 64, 295–311.
Valliant, R., Dorfman, A.H., Royall, R.M., 2000. Finite Population Sampling and Inference: A Prediction Approach. Wiley, New York.
Please cite this article as: Nandram, B., et al., A Bayesian test of independence in a two-way contingency table using
surrogate sampling. Journal of Statistical Planning and Inference (2013), http://dx.doi.org/10.1016/j.jspi.2013.03.011i

http://refhub.elsevier.com/S0378-3758(13)00056-6/sbref5
http://refhub.elsevier.com/S0378-3758(13)00056-6/sbref6
http://refhub.elsevier.com/S0378-3758(13)00056-6/sbref7
http://refhub.elsevier.com/S0378-3758(13)00056-6/sbref10
http://refhub.elsevier.com/S0378-3758(13)00056-6/sbref11
http://refhub.elsevier.com/S0378-3758(13)00056-6/sbref11
http://refhub.elsevier.com/S0378-3758(13)00056-6/sbref12
http://refhub.elsevier.com/S0378-3758(13)00056-6/sbref13
http://refhub.elsevier.com/S0378-3758(13)00056-6/sbref13
http://refhub.elsevier.com/S0378-3758(13)00056-6/sbref14
http://refhub.elsevier.com/S0378-3758(13)00056-6/sbref15
http://refhub.elsevier.com/S0378-3758(13)00056-6/sbref15
http://refhub.elsevier.com/S0378-3758(13)00056-6/sbref16
http://refhub.elsevier.com/S0378-3758(13)00056-6/sbref17
http://refhub.elsevier.com/S0378-3758(13)00056-6/sbref18
http://refhub.elsevier.com/S0378-3758(13)00056-6/sbref19
http://refhub.elsevier.com/S0378-3758(13)00056-6/sbref20
http://refhub.elsevier.com/S0378-3758(13)00056-6/sbref20
http://refhub.elsevier.com/S0378-3758(13)00056-6/sbref21
http://refhub.elsevier.com/S0378-3758(13)00056-6/sbref22
http://dx.doi.org/10.1016/j.jspi.2013.03.011
http://dx.doi.org/10.1016/j.jspi.2013.03.011
http://dx.doi.org/10.1016/j.jspi.2013.03.011

	A Bayesian test of independence in a two-way contingency table using surrogate sampling
	Introduction
	Hierarchical Bayesian model
	Computations, Bayes factor and specifications
	Outline of computations
	Computational details
	Specifications

	Numerical analysis
	Illustrative example
	Simulation study

	Concluding remarks
	Joint posterior density
	A property of the gamma distribution
	Mode of a kernel density estimator
	Bayes factor for a test of independence
	References




