Neural Networks

Prof. Ankur Sinha Indian Institute of Management Ahmedabad Gujarat India

A typical Neuron

 \rightarrow

Information Flow

Applications

- Speech recognition
- Handwriting recognition
- Driverless Cars
- Products: Google translate, Alexa

MLP Architecture

Hidden Layers

A Simple Architecture

A Threshold Logic Unit

Decision Surface of a TLU

A TLU works as a linear classifier

Similar to SVM?

How do you identify the weights and threshold?

Types of Activation Functions

Types of Activation Functions

Х

Training Neural Network

- A training set S of examples {**x**,t} is required
 - **x** is an input vector
 - t is the desired target vector
- Finding acceptable values of w and $\boldsymbol{\theta}$
 - Assume some values for w and $\boldsymbol{\theta}$
 - For the training example x, compute the network output y
 - Compare output y with targets t, a difference denotes error
 - Adjust w and θ so that the error can be reduced
 - Accept w and $\boldsymbol{\theta}$ that leads to minimum error

A Linear Unit

input and output Similar to regression?

Neuron with Sigmoid Function

A Threshold Logic Unit

Gradient descent rules are used to learn the parameters of the NN

hidden layer

Backpropagation approach is used to train the neural network

More about NN Parameters

- The weights of the neural network are determined by training data
- As more training data is obtained the weights should be updated

Neural Networks are Universal

- Any boolean function can be learnt by a neural network with single hidden layer
 - It might require a large number of hidden units

- Any mathematical function that is continuous and bounded can be approximated to an arbitrarily small accuracy using a neural network with one hidden layer
 - A large number of hidden units might be required if the error of approximation is very small

Be Careful!

- Neural network can easily lead to overfitting
- Try to minimize the generalization error than the training error

Be Careful!

- Neural network can easily lead to overfitting
- Try to minimize the generalization error than the training error

Be Careful!

- Neural network can easily lead to overfitting
- Try to minimize the generalization error than the training error

MNIST Database

The MNIST database contains 60,000 training images and 10,000 testing images.

MNIST Database

MNIST Database

