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1 Introduction

Nested bilevel evolutionary algorithm is a nested strategy that uses evolutionary algorithm at both levels

to handle bilevel optimization problems. The N-BLEA approach is intelligent such that it switches

to quadratic programming at lower level whenever possible. It is able to handle lower dimensional

SMD-Suite as well as the TP-Suite successfully. However, it being a nested approach, the function

evaluations are high, particularly for the lower level. This approach has been used in [2, 3, 1] to handle

bilevel test problems as well as real-world problems. The algorithm provided in this package is almost

similar to what has been discussed in the above papers, but it differs slightly in the following ways:

1. QP is implemented at the lower level along with an evolutionary algorithm.

2. Utilizes different kind of termination criterion at both levels.

3. Lower level searches are performed with a reduced lower level population size in the intermediate

upper level generations.

The above modifications help in faster execution of the algorithm. It increases its efficiency and in most

of the cases produces better results than what is reported in the above mentioned papers. It should be

noted that this is a naive strategy to handle bilevel problems. However, it may be useful for developers

to use this approach as a benchmark to evaluate the performance of their algorithms.
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2 Algorithm Description

In this section, we describe the nested bilevel evolutionary algorithm for single-objective bilevel op-

timization problems. The algorithm requires that a lower level optimization task be solved for every

new set of upper level variables produced using the genetic operators. The method relies on a steady

state single objective real coded genetic algorithm to solve the problems at both levels. The procedure

has been discussed in [2, 3, 1]. However, the code provided in the N-BLEA package is slightly dif-

ferent from what has been discussed in the mentioned papers. Following is a step-by-step algorithm

description for N-BLEA:

2.1 Upper Level Optimization Procedure

Step 1 Initialization Scheme. Initialize a random population (Np) of upper level variables. For each

upper level population member execute a lower level optimization procedure (Refer Sub-section

2.2) to determine the corresponding optimal lower level variables. Assign upper level fitness

based on the upper level function value and constraints.

Step 2 Selection of upper level parents. Choose 2µ population members from the previous population

and conduct a tournament selection to determine µ parents.

Step 3 Evolution at the upper level. Perform a PCX based crossover (Refer Sub-section 2.4) and

a polynomial mutation to create λ offspring. This provides the upper level variables for each

offspring.

Step 4 Lower level optimization. Solve the lower level optimization problem (Refer Sub-section 2.2)

for each offspring. This provides the lower level variables for each offspring.

Step 5 Evaluate offspring. Combine the upper level variables with the corresponding optimal lower

level variables for each offspring. Evaluate all the offspring based on upper level function value

and constraints.

Step 6 Population update. Choose r random members from the parent population and pool them with

the λ offspring. The best r members from the pool replace the chosen r members from the

population.

Step 7 Termination check. Proceed to the next generation (Step 2) if the termination check (Refer

Sub-section 2.6) is false.

2.2 Lower Level Optimization

At the lower level we first use a quadratic programming approach to find the optimum. If the proce-

dure is unsuccessful we use a global optimization procedure using an evolutionary algorithm to find

the optimum. The lower level optimization using evolutionary algorithm is able to handle complex

optimization problems with multimodality. The fitness assignment at this level is performed based on

lower level function value and constraints. Let the lower level population size be np. Note that np is

reduced linearly with respect to upper level population variance, but it is not allowed to go below 6. Let

the upper level member being optimized be x
(0)
u . The steps for the lower level optimization procedure

are as follows:
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2.2.1 Lower level quadratic programming

Step 1 If execution is transferred from Step 1 of upper level then go to Step a otherwise go to Step b.

a: Create
(np+1)(np+2)

2
+ np + 1 lower level points randomly. Evaluate all the points with respect to

lower level objectives and constraints, and choose the best one as x
(0)
l . Go to Step 2.

b: Determine the member closest to x
(0)
u in the upper level population. Denote the lower level optimal

variables from the closest upper level member as x
(0)
l . Create

(np+1)(np+2)

2
+np lower level points

about x
(0)
l using polynomial mutation. Go to Step 2.

Step 2 Construct a quadratic approximation for lower level objective function about x
(0)
l using the

created points. Construct linear approximations for the lower level constraints.

Step 3 Optimize the quadratic function with linear constraints using a sequentially quadratic program-

ming approach.

Step 4 Compute the value of the optimum using the quadratic approximated objective function and

the true lower level objective function. If the absolute difference is less than δmin and the point

is feasible and better than x
(0)
l , accept the solution as lower level optimum, otherwise perform an

evolutionary optimization search.

2.2.2 Lower level evolutionary optimization

Step 1 Quadratic programming is already executed but unsuccessful, therefore use an evolutionary

approach to handle the lower level problem. Use the solution obtained using quadratic pro-

gramming as one of the population members and randomly initialize other np − 1 lower level

members. The upper level variables are kept fixed for all the population members. Assign lower

level fitness based on the lower level function value and constraints.

Step 2 Choose 2µ members randomly from the lower level population. Perform a tournament selec-

tion with respect to lower level fitness to generate µ parents.

Step 3 Perform crossover and mutation to generate λ offspring.

Step 4 Evaluate each offspring with respect to lower level function and constraints.

Step 5 Choose r members randomly from the lower level population and pool them with the λ lower

level offspring. The best r members with respect to lower level fitness replace the chosen r
members from the lower level population.

Step 6 Proceed to the next generation (Step 2) if the termination check (Refer Sub-section 2.6) is false.

2.3 Parameters

The parameters in the algorithm were fixed as µ = 2, λ = 3 and r = 2. Probability of crossover

was fixed as 0.9 and the probability of mutation was fixed as 0.1. The crossover operator requires two
parameters ωξ and ωη, which are fixed as suggested in the next subsection.
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2.4 Crossover Operator

The crossover operator used at both levels is a parent centric crossover operator. The operator creates

an offspring from three parents, when one of the three parents is chosen as the index parent as follows,

c = xp + ωξd+ ωη

p2 − p1

2
. (1)

The terms used in the above equation are defined as,

• xp is the index parent

• d = xp −w, where w is the mean of µ parents

• p1 and p2 are the other two parents

• ωξ = 0.1 and ωη =
∑mv

i=1
mv

|xi
p−wi|

are the two parameters, where v ∈ {u, l} such that mu is the

number of variables at the upper level andml is the number of variables at the lower level.

The two parameters ωξ and ωη, describe the extent of variations along the respective directions. While

creating λ = 2 offspring from µ = 3 parents, the best parent is chosen as an index parent everytime.

2.5 Constraint Handling

We define the constraint violation as the sum of violations of all the constraints at the respective levels.

If a member at a particular level has a smaller constraint violation, then it is always preferred over a

member with a higher constraint violation at the same level. A member with no constraint violation

is deemed to be feasible, and is considered better than any of the other infeasible members. While

comparing two feasible members, the member with a smaller function value at the level is preferred.

2.6 Termination Check

The algorithm uses a variance-based as well as improvement-based termination criteria at both levels.

When the variance of the population members is below a particular threshold the optimization task is

terminated. Further, in case the improvement in the function value of the elite is below the threshold

after a fixed number of generation the optimization task terminates.
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