
Statistical Methodology 11 (2013) 1–21

Contents lists available at SciVerse ScienceDirect

Statistical Methodology

journal homepage: www.elsevier.com/locate/stamet

Bayesian predictive inference of a finite population
proportion under selection bias
Balgobin Nandram a,∗, Dilli Bhatta a, Dhiman Bhadra a, Gang Shen b

a Department of Mathematical Sciences, Worcester Polytechnic Institute 100, Institute Road, Worcester, MA 01609, United States
b Department of Statistics, North Dakota State University, 1360 Bolley Drive, Fargo, ND 58108, United States

a r t i c l e i n f o

Article history:
Received 3 December 2011
Received in revised form
9 May 2012
Accepted 27 August 2012

Keywords:
Accept–reject algorithm
Binary responses
Monte Carlo methods
Nonignorable selection model
Survey weights
Selection not at random

a b s t r a c t

We show how to infer about a finite population proportion using
data from a possibly biased sample. In the absence of any selection
bias or survey weights, a simple ignorable selection model, which
assumes that the binary responses are independent and identically
distributed Bernoulli random variables, is not unreasonable.
However, this ignorable selection model is inappropriate when
there is a selection bias in the sample. We assume that the survey
weights (or their reciprocals whichwe call ‘selection’ probabilities)
are available, but there is no simple relation between the binary
responses and the selection probabilities. To capture the selection
bias, we assume that there is some correlation between the binary
responses and the selection probabilities (e.g., there may be a
somewhat higher/lower proportion of positive responses among
the sampled units than among the nonsampled units). We use
a Bayesian nonignorable selection model to accommodate the
selection mechanism. We use Markov chain Monte Carlo methods
to fit the nonignorable selection model. We illustrate our method
using numerical examples obtained from NHIS 1995 data.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A serious concern of many government agencies is selection bias in survey data. In many complex
surveys, individuals are sampledwith differential probabilities of selection, and these are incorporated
in the survey weights. For continuous responses, many researchers have worked on the problem
of selection bias, but for discrete data, very little has been done. We look at a problem in which a
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biased sample is taken from a finite population where the proportion of positive responses among
the sampled units may be different from the proportion of positive responses among the nonsampled
units. We assume that the survey weights can at least partially explain this difference. Our main
target of inference is the finite population proportion when there is likely to be a selection bias.
Specifically, we consider binary data as a special case of discrete data since not much work has
been done in this area. We note the work of Malec et al. [8] and Nandram [9] for binary data.
We work with the model of Malec et al. [8], which is appropriate for binary data when there is a
selection bias.We found two problematic issueswith theirmodel andwe discuss them in detail in this
paper.

There are two ways to model selection bias. First, one can adjust the sample part of a population
model. Once the parameters are estimated from the biased sample, the entire population is predicted
using the population model whose parameters are obtained from the biased sample; see [9,8,12].
Second, one can utilize an explicit relation between the surveyweights and the response variable. This
approach for continuous data is well known [17,21,20,18]. Another approach is provided by Chambers
et al. [1], who assume that the selection probabilities are related to the continuous responses;
Nandram et al. [13] developed this approach further in a business application. Other approaches to
selection bias include the work of Chen et al. [2], who also use penalized spline to obtain a Bayesian
predictive inference for PPS sampling; see also [22] for another approach to include survey weights.
These approaches are difficult to use because they require some information about the nonsample
selection probabilities, and in fact, this is not the problem of interest. Nevertheless, the literature on
selection bias shows convincingly the need to incorporate the selection probabilities in a sensible
manner.

Pfeffermann et al. [17] consider problems similar to the one investigated in this paper, where
they assume that the first-order selection probabilities are related to the response variables and
these probabilities are known only for the sampled units. To make inference for the superpopulation
parameters they derive marginal likelihoods using weighted distributions in the spirit of Patil
and Rao [16]. However, to obtain the joint likelihood they have to use asymptotic arguments to
justify combining the marginal likelihoods. Moreover, their methodology permits inference only for
the superpopulation parameters. In their framework, extension to inference for finite population
parameters is difficult; see [7,19] for related work. Sverchkov and Pfeffermann [21] define the
sample and sample-complement distributions as two separate weighted distributions (see [16]) for
developing design consistent predictors of the finite population total. Further development of this
work was given recently within the small-area context [20] with informative sampling (i.e., selection
bias) of areas and within selected areas. Opsomer et al. [15] discussed non-parametric small-area
estimation using penalized spline regression; the selection probabilities can be incorporated in a
similar manner albeit the selection probabilities are available only for the sample. Again, these works
are for continuous response, and they are not directly applicable to our situation. In this paper, we
analyze binary data from a single area, and we assume that nonsampled selection probabilities are
not available.

When one includes the selection probabilities in a model, there are two possible choices, an
ignorable or nonignorable selection model. In an ignorable selection model the response variable
is not related to the selection mechanism, but in a nonignorable selection model the response is
related to the selection mechanism, at least partially. For example, for binary data there may be a
higher/lower proportion of positive responses among the sampled values than among the nonsampled
values. To account for this discrepancy, one can allow the response binary variable to be correlated
with the survey weights or their reciprocals. We use the latter approach in this paper. The notions
of the selection mechanism are similar to those for missing data mechanisms, such as missing
completely at random (MCAR), missing at random (MAR) and missing not at random (MNAR). We
can coin analogous notions such as selection completely at random (SCAR), selection at random
(SAR) and selection not at random (SNAR). We have a nonignorable selection model for the SNAR
mechanism, and this is different from the ignorable selection model for the SCAR or SAR mechanism;
see [12].

For an ignorable selection model, one possibility is to have the binary response variable, y,
not dependent on the selection probability associated with it. So the ignorable selection model is
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simply p(y | p). That is, y1, . . . , yN | p
i.i.d.
∼ Bernoulli(p) and in a Bayesian analysis one assigns a prior

distribution to p. In fact, any parametric model, in which the yi are not correlated with the survey
weights, suffices. However, we have a biased sample of size n from the finite population.

To incorporate selection bias into the ignorable selection model, Malec et al. [8] use a hierarchical
Bayesian model to estimate a finite population proportion when there are binary data. Difficulty in
including the selection probabilities directly in the model forces them to make an ad hoc adjustment
to the likelihood function and use a Bayes empirical Bayes (i.e., not a full Bayesian) approach. However,
without their adjustment, Nandram and Choi [12] have incorporated selection probabilities into a
nonignorable nonresponse model to analyze continuous body mass index data using a full Bayesian
analysis. For binary data, we start with the model of Malec et al. [8], which includes an unspecified
relation between the selection probabilities and a binary characteristic. Henceforth, we will use the
term, MDC, to refer to Malec et al. [8].

MDC imagines a sampled unit representing itself and N∗
− 1 other units (not sampled) in the

population, and the model selection indicators are δj, j = 1, . . . ,N∗; here N∗ is unknown. So that
δ1 = 1 for the unit actually sampled, and δ2 = · · · = δN∗ = 0 for the imaginary units this single
sampled unit represents. Letting π∗

u , u = 1, . . . ,U , be specified values, the pertinent part of theMDC
model is

δj | N∗, πj
ind
∼ Bernoulli(πj), j = 1, . . . ,N∗, (1)

P(πj = π∗

u | θ
˜
, y) = θuy, y = 0, 1, u = 1, . . . ,U, (2)

P(Yj = y | p) = py(1 − p)1−y, y = 0, 1, 0 ≤ p ≤ 1, j = 1, . . . ,N∗. (3)

A priori MDC took P(N∗) = 1, N∗
≥ 1 (in practice, N∗

≫ 1). This is a uniform prior on 1, 2, . . .which
allows easy integration but it is improper. We review the development of MDC in Appendix A, where
we provide a complete proof and show that

p(Y = y, π = π∗

u | θ
˜
, p) =

π∗
u θuyP(Y = y | p)

U
u=1

π∗
u

1
y=0

θuyP(Y = y | p)
, y = 0, 1, u = 1, . . . ,U; (4)

MDC did not present this form. (We drop subscript j from Y because (4) is the likelihood of a single
observation.) In (4) there is also a conditioning on δj = 1 which we have dropped from the notation;
see Appendix A. Once p is estimated, we can draw the entire finite population values, y1, . . . , yN , via
surrogate sampling; see [9,12].

However, there are two possible problemswith thismodel. First, the θuy are onlyweakly identified.
Second, the parameters θuy are never known, and in a Bayesian framework these must also be
stochastic. In this paper, in a single attempt, we show how to solve these two problems (weak
identifiability and stochastic parameters) for a biased sample drawn from a binary population using
information from the survey weights (or selection probabilities).

It is easy to see why the θuy might be weakly identified. Note that, since
U

u=1 θuy = 1, y = 0, 1,
the θuy are not invariant to scale (i.e., scale is not a problem). However, it is possible that the θuy are
invariant to location. For example, adding α to θuy, where α + θuy < 1 and α < θu′y, and subtracting α

from θu′y does not change
U

u=1 θuy = 1, y = 0, 1. This will lead to long-range dependence in a Gibbs
sampler (i.e., poor mixing) with a uniform prior; see [4]. This problem can be corrected by putting a
proper informative prior on θuy.

A related problem occurs. When θu0 ≈ θu1, u = 1, . . . ,U , there will be difficulty in estimation.
In fact, when the θuy do not depend on y, the term π∗

u θuy/
U

u=1 π∗
u θuy in (4) becomes independent of

P(Y = y | p) and the selection probabilities do not matter. Therefore, at least some of the θu0 must
be sufficiently different from the θu1. If the sampling scheme is close to simple random sampling
(i.e., very little selection bias), there will be difficulties in model fitting.

In this paper, we consider the problem of making inference about a finite population proportion
when a possibly biased sample is available from it. Specifically we show how to fix the two problems
of MDC by putting a proper informative prior on θuy. The survey weights help to adjust for the bias.



4 B. Nandram et al. / Statistical Methodology 11 (2013) 1–21

In Section 2 we show how to adjust a standard ignorable selection model to incorporate the survey
weights. We also show how to perform the computations. In Section 3 we provide a numerical
example on severe activity limitation in the 1995 National Health Interview Survey (NHIS 1995).
Section 4 has concluding remarks. Further explanations are given in the appendices.

2. Methodology

We consider a finite population of N units, and we view this finite population as a random sample
from a superpopulation. However, the sample from the finite population can be biased. That is, a
probability sample of size n is taken with selection probabilities πi, i = 1, . . . ,N . The selection
probabilities are observed only for the sampled values. These selection probabilities are adjusted
by the design scientists because of various reasons such as nonresponse and different weights from
various sources.

Let y1, . . . , yN denote the finite population values and a sample S of size n is taken from the
population; also let S̄ denote the set of nonsampled values. Let the sampled values be y1, . . . , yn. Let
P =

N
i=1 yi/N denote the finite population proportion and p̂ =

n
i=1 yi/n denote the corresponding

sample proportion. While p is the parameter of the superpopulation, P is the analogous parameter in
finite population. Clearly, p̂ can be a biased estimator of p. Typically, the sample selection probabilities
of the sampled units are known. In design-based survey analysis, P is a fixed unknown quantity, but
clearly in Bayesian inference P is a random variable which is to be predicted. Our main interest is to
predict P when a biased sample is available from the superpopulation.

We describe an ignorable selection model and a nonignorable selection model. We also show
how to fit these models and how to make inference about the finite population proportion. Under
the nonignorable selection model, inference about the finite population proportion is obtained using
surrogate samples.

2.1. Ignorable selection model

A standard ignorable selection model for the binary variables yi, i = 1, . . . ,N , is

yi | p
i.i.d.
∼ Bernoulli(p) and p ∼ Uniform(0, 1).

Then, letting s =


i∈S yi, p | s
ind
∼ Beta(s + 1, n − s + 1) with E(p|s) = (s + 1)/(n + 2), var(p|s) =

(s + 1)(n − s + 1)/(n + 2)2(n + 3) and the posterior modal estimator of p is p̂ =
s
n . It is also easy to

show that the 100(1−α)% highest posterior density (HPD) interval of p exists. Let F(·) denote the cdf
of the Beta(s+ 1, n+ 1) random variable. If the mode is at 0, the HPD interval will be (0, F−1(1−α)).
If the mode is at 1, then the HPD interval will be (F−1(α), 1). If the mode is not on the boundary
(i.e., 0 or 1), then the HPD interval will be (a, F−1 {1 − α + F(a)}), where 0 < a < 1 is the solution to

F−1
{(1 − α) + F(a)}

s 
1 − F−1

{(1 − α) + F(a)}
(n−s)

= as(1 − a)n−s

which can be easily computed using the bisection method.
Bayesian predictive inference of P is performed in the following manner. Letting y

˜
s denote the

vector of sampled values and y
˜
s̄ denote the vector of nonsampled values. Then, letting f = n/N denote

the sampling fraction, we have

P = f p̂ + (1 − f )Ȳs̄ with Ȳs̄ = T/(N − n), T =


i∈S̄

yi,

where p̂ is the sample proportion and

T | p ∼ Binomial(N − n, p).

Thus, inference is straightforward (e.g., Rao–Blackwellized estimators of the posterior density of P can
be obtained).
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2.2. Nonignorable selection model

We assume that the sample selection probabilities (π1, . . . , πn) have support over the set π∗
u , u =

1, . . . ,U . That is, πi, i = 1, . . . , n, have a histogram where the midpoints of the categories are the
π∗
u . Throughout these π∗

u are assumed known and the πi are assumed to be random quantities. The
distribution of the selection probabilities, given the binary response yi, is

Pr(πi = π∗

u | θ
˜
, yi = y) = θuy, u = 1, . . . ,U, y = 0, 1, i = 1, . . . , n

and

yi | p
i.i.d.
∼ Bernoulli(p), i = 1, . . . ,N.

Note that p is the proportion of ones in the entire superpopulation. It is worth noting that if θu0 =

θu1, u = 1, . . . ,U , the model cannot accommodate selection bias. We will discuss this issue later.
Using (4), it is easy to show that

P(Y = y | π = π∗

u , θ
˜
, p) =

θuypy(1 − p)1−y
y

θuypy(1 − p)1−y
(5)

and

P(Y = y|θ
˜
, p) =


u

π∗
u θuypy(1 − p)1−y

y


u

π∗
u θuypy(1 − p)1−y

. (6)

The sampled data actually come from the probability mass function in (6) and the entire population
is described by P(Y = y | p) = py(1− p)1−y, y = 0, 1, thereby showing how the selection bias enters
into the model. Note again that if θuy does not depend on y, these two probability mass functions
are exactly the same. Thus, the key parameters in the selection bias are the θuy. Thus, one has to be
cautious in model fitting.

Now, in (5),

P(Y = y|π = π∗, θ
˜
, p) =

 θuy
y

θuypy(1 − p)1−y

 py(1 − p)1−y.

Here P(Y = y|π = π∗, θ
˜
, p) is a weighted distribution with weights w =

θuy
y θuypy(1−p)1−y and

P(Y = y | p) is distribution of the populationwithout selection bias (i.e., under the ignorable selection
model). Next we discuss how these weights affect the original distribution. Now P(Y = 1|π =

π∗, p = 1) = 1 and P(Y = 0|π = π∗, p = 0) = 1. That is, if p is near the boundary at 0 or 1,
there is little selection bias. However, P(Y = 1|π = π∗, p = 1/2, θ

˜
) = θu1/(θu0 + θu1), and this is

not equal to a half and it does depend on θ
˜
. Thus, when p is around the middle of (0, 1), our model

will pick up the selection bias.
Since the sampling units are independent, using (4), the joint density of the entire sample is

P(y
˜
, π

˜
| θ
˜
, p) =

U
u=1

(π∗
u θu0)

gu0
U

u=1
(π∗

u θu1)
gu1

p

u

π∗
u θu1 + (1 − p)


u

π∗
u θu0

n ps(1 − p)(n−s), (7)

where s =
n

i=1 yi, gu0 is the cell count for category u for y = 0 and gu1 is the cell counts for category
u for y = 1. Note that

U
u=1 gu0 = n − s,

U
u=1 gu1 = s and

U
u=1(gu0 + gu1) = n. This likelihood

includes the selection bias.
The parameters θ

˜
0 and θ

˜
1 are weakly identified. This can lead to poor performance of a Markov

chain Monte Carlo algorithm (e.g., Gibbs sampler). Thus, it is sensible to minimize the effect of the
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nonidentifiability as much as possible. A priori we assume that p, θ
˜
0 and θ

˜
1 are independent, and we

take

p ∼ Uniform(0, 1)

θ
˜
0 | τ ∼ Dirichlet(θ

˜

(0)
0 τ) and θ

˜
1 | τ ∼ Dirichlet(θ

˜

(0)
1 τ),

where θ
˜

(0)
0 and θ

˜

(0)
0 are to be specified. Finally,

p(τ ) =
1

(1 + τ)2
, τ ≥ 0.

This latter prior, also called a shrinkage (reference, objective) prior, is used to avoid the difficulties
associatedwith improper priors of the form p(τ ) ∝ 1/τ (e.g., see [5] for a discussion of such improper
priors and Natarajan and Kass [14] for a discussion of shrinkage prior). Therefore, the joint prior
density of p, θ

˜
0, θ

˜
1, τ is

π(p, θ
˜
0, θ

˜
1, τ ) =

U
u=1

θ
θ
(0)
u0 τ−1

u0

D(θ
˜

(0)
0 τ)

U
u=1

θ
θ
(0)
u1 τ−1

u1

D(θ
˜

(0)
1 τ)

1
(1 + τ)2

. (8)

Next, using Bayes’ theorem, the joint posterior density of p, θ
˜
1, θ

˜
0, τ given the data, π

˜
, y
˜
, is

π(p, θ
˜
1, θ

˜
0, τ | π

˜
, y
˜
) ∝

U
u=1

(π∗
u θu0)

gu0
U

u=1
(π∗

u θu1)
gu1

p

u

π∗
u θu1 + (1 − p)


u

π∗
u θu0

n ps(1 − p)n−s

×

U
u=1

θ
θ
(0)
u0 τ−1

u0

D(θ
˜

(0)
0 τ)

U
u=1

θ
θ
(0)
u1 τ−1

u1

D(θ
˜

(0)
1 τ)

1
(1 + τ)2

, (9)

where
U

u=1 gu0 = n − s and
U

u=1 gu1 = s. Henceforth, we will drop π
˜
from the conditioning.

Letting

ay =


u

π∗

u θuy, y = 0, 1,

the conditional posterior density of p is

π(p | θ
˜
1, θ

˜
0, τ , y

˜
) ∝

1
[a1p + a0(1 − p)]n

ps(1 − p)n−s

which is a weighted beta distribution [16]. Note that π(p | θ
˜
1, θ

˜
0, τ , y

˜
) does not depend on τ so

that sometimes we will drop τ from the conditioning. It is also true that the conditional posterior
distribution of p is unimodal. To see this, let∆(p) = −n ln[a1p+a0(1−p)]+s ln(p)+(n−s) ln(1−p).
Then,

∆′(p) = −
n(a1 − a0)

a1p + a0(1 − p)
+

s
p

−
n − s
1 − p

and

∆′′(p) =
n(a1 − a0)2

[a1p + a0(1 − p)]2
−

s
p2

−
n − s

(1 − p)2
.

Solving ∆′(p̃) = 0, we have

p̃ =
a0n

s(a0 − a1) + a1n
p̂
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as a solution. It is also easy to show that ∆′′(p̃) < 0, so that p̃ is the unique mode. This is useful
because it is relatively much easier to study a unimodal density such as π(p | θ

˜
1, θ

˜
0, τ , y

˜
) using

sampling-based analysis. However, one can see thatπ(p | θ
˜
1, θ

˜
0, τ , y

˜
) is not logconcave (i.e., strongly

unimodal).
It is interesting to look at p̃momentarily. When a0 = a1, p̃ = p̂ and there is no selection bias. This

means that if a0 = a1,


u π∗
u (θu0 − θu1) = 0, the weighted average of the deviations θu0 − θu1 = 0

with weight π∗
u , there is no selection bias. Therefore, it is not required that θu0 = θu1 for every u to

have no selection bias. Let

ν =
a0n

{s(a0 − a1) + a1n}
=

a0n
{a0n + (n − s)(a1 − a0)}

.

Thus, if a0 ≥ a1 then ν ≥ 1 and so p̃ ≥ p̂. Similarly if a0 < a1 then ν < 1 and so p̃ < p̂. This explains
how the model accounts for the selection bias as the estimates of p under the ignorable selection
model and nonignorable selection model are different.

2.3. Computation

It is convenient to use a sampling basedmethod tomake inference about p. Using the joint posterior
density in (9) and assuming the π∗

u are fixed and known, to perform the Gibbs sampler, we need the
conditional posterior densities, given by

g̃1(θ
˜
0|θ

˜
1, p, τ , y

˜
) ∝

U
u=1

(π∗
u θu0)

gu0

[a1p + a0(1 − p)]n
U

u=1

θ
θu0τ−1
u0 ,

g̃2(θ
˜
1|θ

˜
0, p, τ , y

˜
) ∝

U
u=1

(π∗
u θu1)

gu1

[a1p + a0(1 − p)]n
U

u=1

θ
θu1τ−1
u1 ,

g̃3(p|θ
˜
0, θ

˜
1, τ , y

˜
) ∝

1
[a1p + a0(1 − p)]n

ps(1 − p)n−s,

and

g̃4(τ | θ
˜
0, θ

˜
1, p, y

˜
) ∝


Γ (τ )

1 + τ

2 U
u=1


θ

θu0τ−1
u0

Γ (θu0τ)

θ
θu1τ−1
u1

Γ (θu1τ)


.

However, because of the accept–reject method we use for drawing p, this Gibbs sampler is a bit
slow.

We use an alternative procedure that avoids the accept–reject algorithmwithin the Gibbs sampler.
Rather we use the accept–reject algorithm in an output analysis of the Gibbs sampler. This procedure
accelerates the Gibbs sampler; see [11] for a related procedure to accelerate the Gibbs sampler. To
proceed, we first transform p to q in (9) keeping all other variables untransformed. It is easy to see
that the quantity, which is affected by the transformation, is H(p, θ

˜
), where

H(p, θ
˜
) =

ps(1 − p)n−s

[pa1 + (1 − p)a0]n
=

as1p
s
{a0(1 − p)}n−s

as1a
n−s
0 {pa1 + (1 − p)a0}n

.

Wemake a one-to-one transformation from p to q via

q =
a1p

a1p + a0(1 − p)
.

Note that retransforming to p, we have

p =
a0q

a0q + a1(1 − q)
.
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The Jacobian of the transformation is a0a1/(qa0 + (1 − q)a1)2. Then,

H(q, θ
˜
) =

qs−1(1 − q)n−s−1

an−s
0 as1


a0

a0q + a1(1 − q)


a1

a0q + a1(1 − q)


=

qs−1(1 − q)n−s−1

an−s
0 as1


(1 − q)a1

a0q + a1(1 − q)


qa0

a0q + a1(1 − q)


= qs−1(1 − q)n−s−1 ∆θ

˜

(q)(1 − ∆θ

˜

(q))
U

u=1
π∗
u θu0

n−s  U
u=1

π∗
u θu1

s ,

where ∆θ

˜

(q) =
(1−q)a1

a0q+a1(1−q) and θ
˜

= (θ
˜
0, θ

˜
1).

Therefore, the joint posterior density of q, θ
˜
1, θ

˜
0, τ given the data y

˜
, is

π(q, θ
˜
1, θ

˜
0, τ | y

˜
) ∝ qs−1(1 − q)n−s−1∆θ

˜

(q){1 − ∆θ

˜

(q)}

×

U
u=1

(π∗
u θu0)

gu0
U

u=1
(π∗

u θu1)
gu1

U
u=1

π∗
u θu0

n−s  U
u=1

π∗θu1

s

×

U
u=1

θ
θ
(0)
u0 τ−1

u0

D(θ
˜

(0)
0 τ)

U
u=1

θ
θ
(0)
u1 τ−1

u1

D(θ
˜

(0)
1 τ)

1
(1 + τ)2

. (10)

To accelerate the Gibbs sampler, we integrate out q from (10). The integrated posterior density is

π(θ
˜
1, θ

˜
0, τ | y

˜
) ∝ I(θ

˜
1, θ

˜
0; y

˜
)

U
u=1

(π∗
u θu0)

gu0
U

u=1
(π∗

u θu1)
gu1

U
u=1

π∗
u θu0

n−s  U
u=1

π∗θu1

s

×

U
u=1

θ
θ
(0)
u0 τ−1

u0

D(θ
˜

(0)
0 τ)

U
u=1

θ
θ
(0)
u1 τ−1

u1

D(θ
˜

(0)
1 τ)

1
(1 + τ)2

(11)

where

I(θ
˜
1, θ

˜
0; y

˜
) =

 1

0

qs−1(1 − q)n−s−1

B(s, n − s)
∆θ

˜

(q){1 − ∆θ

˜

(q)}dq.

Clearly, 0 ≤ I(θ
˜
1, θ

˜
0; y

˜
) ≤ 1, and is thereforewell defined. Note also that I(θ

˜
1, θ

˜
0; y

˜
) does not depend

on τ .
It is easy to compute the one-dimensional integral, I(θ

˜
1, θ

˜
0; y

˜
). Let F(t) denote the cumulative

distribution function of T ∼ Beta(s, n − s). We divide [0, 1] into 100 sub-intervals with end points
bj = 0.01j, j = 0, . . . , 100. Let cj = (bj−1 + bj)/2, j = 1, . . . , 100. Then, an efficient estimator of
I(θ

˜
1, θ

˜
0; y

˜
) is

Î(θ
˜
1, θ

˜
0; y

˜
) =

100
j=1

∆θ

˜

(cj)(1 − ∆θ

˜

(cj)){F(bj) − F(bj−1)}.

This runs very quickly.
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Thus, the conditional posterior densities needed to execute the integrated Gibbs sampler are

g1(θ
˜
0|θ

˜
1, τ , y

˜
) ∝

U
u=1

(π∗
u θu0)

gu0
U

u=1
π∗
u θu0

n−s


U

u=1

θ
θ
(0)
u0 τ−1

u0


I(θ

˜
1, θ

˜
0; y

˜
), (12)

g2(θ
˜
1|θ

˜
0, τ , y

˜
) ∝

U
u=1

(π∗
u θu1)

gu1
U

u=1
π∗θu1

s


U

u=1

θ
θ
(0)
u1 τ−1

u1


I(θ

˜
1, θ

˜
0; y

˜
), (13)

and transforming τ to φ = τ/(1 + τ),

g3(φ | θ
˜
0, θ

˜
1, y

˜
) ∝

{Γ (τ )}2
U

u=1

 θ
θ
(0)
u0 τ−1

u0

Γ (θ
(0)
u0 τ)

θ
θ
(0)
u1 τ−1

u1

Γ (θ
(0)
u1 τ)




τ=φ/(1−φ)

, 0 < φ < 1. (14)

The integrated Gibbs sampler runs by drawing a sample from (12)–(14), each in turn, and iterating
the procedure. Samples from these conditional posterior densities are obtained using a grid method.
Note that, because of the limited amount of data, τ is expected to be small; so that drawing φ using a
grid method is efficient.

Note I(θ
˜
1, θ

˜
0; y

˜
) has to be computed at each step of the Gibbs sampler. However, we need to

compute the F(bj) just once. This speeds up the procedure. Also, note that when θ
˜
0 or θ

˜
1 is drawn, the

algorithm is performed component-wise. For example, when draws are made from the conditional
posterior distribution of θu0, u = 1, . . . ,U − 1, the grid is performed not on the entire interval [0, 1],
but on a much shorter interval [0,

U−1
u′=1,u′≠u θu′0].

The conditional posterior density of q is

π(q | θ
˜
0, θ

˜
1, y) ∝ qs−1(1 − q)n−s−1∆θ

˜

(q){1 − ∆θ

˜

(q)}.

Sampling from π(q | θ
˜
0, θ

˜
1, y) can be done using the simple accept–reject algorithm which we

now discuss. We use the candidate generating density q ∼ Beta(s, n − s) which we denote by
πa(q | θ

˜
1, θ

˜
0, y

˜
). Then,

π(q | θ
˜
1, θ

˜
0, y

˜
)

πa(q | θ
˜
1, θ

˜
0, y

˜
)

= ∆θ

˜

(q){1 − ∆θ

˜

(q)} ≤
1
4
.

Hence, to run the accept–reject algorithm, we need the acceptance probability,

π(q | θ
˜
1, θ

˜
0, y

˜
)

πa(q | θ
˜
1, θ

˜
0, y

˜
)


sup

0<q<1

π(q | θ
˜
1, θ

˜
0, y

˜
)

πa(q | θ
˜
1, θ

˜
0, y

˜
)

= 4∆θ

˜

(q){1 − ∆θ

˜

(q)}.

Then, we draw q ∼ Beta(s, n− s) and accept it with probability 4∆θ

˜

(q){1−∆θ

˜

(q)}. It is worth noting
that we cannot use adaptive rejection sampling (e.g., [6]) because while the conditional posterior
density of q is unimodal, it is not logconcave (required for adaptive rejection sampling). That is, the
adaptive rejection sampling is a special case of the accept–reject sampling which we just described.

Once p is estimated, we draw the entire finite population values, y1, . . . , yN , independently from
Bernoulli(p); Nandram [9] and Nandram and Choi [12] have done this in a similar manner. Here, we
simply need

N
i=1 yi | p ∼ Binomial(N, p). So really we have corrected the observed biased sample

and replaced it by a surrogate sample for every p that we obtained from the nonignorable selection
model. Let π(p | y

˜
s, π

˜
) denote the posterior density of p. Note again that p is the proportion of ones

in the entire superpopulation (i.e., the selection bias has been removed). Thus,

Π(P | y
˜
s, π

˜
) =


π(P | p)π(p | y

˜
s, π

˜
)dp.
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Once samples are obtained from the posterior density of p, it is now easy to take a census of the
entire population using the composition method. To every sample of p, obtained from the Gibbs
sampler, a sample of P is obtained by drawing

N
i=1 yi from the Binomial distribution (one does not

need to draw each Bernoulli random variable) and divide the result by N . Thus, we have obtained a
Rao–Blackwellized estimator of the posterior density of P .

For our examples we have run the Gibbs sampler in exactly the same manner. We used the first
1000 iterates as a ‘burn in’, and we took every tenth thereafter to get 1000 iterates which we use to
infer about the finite population proportion.We use the trace plots and the autocorrelation coefficient
among the iterates to monitor convergence of the Gibbs sampler.

Finally, we note that the highest posterior density (HPD) interval of the finite population
proportions are obtained using the algorithm of Chen and Shao [3], which requires unimodality of
the posterior densities. The algorithm, based on the bisection method which we described earlier for
the ignorable selection model, gives answers which are very close to the nonparametric method of
Chen and Shao [3].

3. Numerical examples

The data we used for this study comes from the 1995 National Health Interview Survey (NHIS 95).
The National Health Interview Survey is an important source of information on the health of the US
population. We construct twelve examples from these data to allow us to compare different patterns
of selection bias. Although our data analyses are important to the National Center for Health Statistics,
the specific purpose of our study is to show differences between the ignorable selection model and
our nonignorable selection model.

One of the variables in NHIS is activity limitation, which is a major health problem among adults,
with chronic conditions in the United States. For adults, age 30–80 years, we study severe activity
limitation (SAL), where y = 1 if an adult has SAL and y = 0 otherwise. In the original data, there
are seven levels of education, and we have recoded it into three levels (pre-college: L, college: M and
post-college: H). Sex has two levels (male: M and female: F). Race also has two levels (white: W and
nonwhite: B). Each combination of education, sex and race is considered as a domain; therefore, the
dataset is divided into twelve domains.Wewill call these domains LMW, LMB, LFW, LFB,MMW,MMB,
MFW, MFB, HMW, HMB, HFW, HFB (e.g., LMW: white males with pre-college education, LMB: black
males with pre-college education, etc.). Thus, there are twelve examples corresponding to data from
these twelve domains which are analyzed independently.

Since the NHIS 95 uses a multistage sampling design to draw samples from the US population,
it is necessary to use an adult’s survey weight for accurate analysis of the data. The survey weight
for each sampled adult is the product of four components. These are the probability of selection,
household adjustment within segment, first-stage ratio adjustment, and post-stratification by age-
sex-race-ethnicity. In addition to the design and ratio adjustments included in a person’s basicweight,
a person’s weight is further modified depending on the variable selected, the length of the recall
period, and the period of time for which the estimate is to be made. The combined weight is used
as our sampling weight. Nandram et al. [10] has an extensive discussion of the survey design and data
collection. They also have a more detailed discussion of these data with a different emphasis. We will
consider the reciprocal of a survey weight as the ‘selection’ probability of each adult.

We order the selection probabilities from smallest to largest π(1), . . . , π(n). Let the quintiles be
t1 = π(0.20n), t2 = π(0.40n), t3 = π(0.60n), t4 = π(0.80n) and let t0 = π(1) and t5 = π(n). We define
π∗
u = (tu−1 + tu)/2, u = 1, . . . , 5 (i.e., the midpoint). Note that θuy is the proportion of units in the

interval (tu−1, tu) conditional on y = 0, 1. If the θu0 are considerably different from θu1, there is strong
evidence that the sampled values are biased.

The data are shown in Table 1. The selection probabilities on the average are mostly similar for
y = 0 and y = 1. The sampling fractions are very small but the sample sizes within the domains
are large. Because the sample size of each domain is very large, there is enough data. Unfortunately
large sample sizes do notmatter when there is selection bias. Thus, the simultaneous analysis of these
domains as in small-area estimation is not appropriate, and therefore it is not the focus of this paper.
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Table 1
Summaries of the key features of the data on severe activity limitation (SAL) and the selection probabilities.

Domain n s p̂ f avg0 avg1 p-value

LMW 1738 267 0.154 0.303 0.402 0.363 0.000
LMB 305 82 0.269 0.275 0.317 0.311 0.927
LFW 1997 268 0.134 0.325 0.452 0.419 0.095
LFB 400 77 0.193 0.286 0.336 0.355 0.483
MMW 7595 571 0.075 0.227 0.273 0.267 0.218
MMB 1507 184 0.122 0.250 0.284 0.310 0.083
MFW 8918 538 0.060 0.233 0.285 0.277 0.546
MFB 2004 179 0.089 0.279 0.310 0.322 0.334
HMW 7555 228 0.030 0.213 0.243 0.249 0.383
HMB 1236 52 0.042 0.236 0.269 0.283 0.134
HFW 7794 275 0.035 0.219 0.254 0.242 0.101
HFB 1682 65 0.039 0.257 0.292 0.301 0.438

Note: Domains are formed by crossing education (pre-college: L, college: M and post-college: H), sex (male: M, female: F) and
race (white: W, black: B). Here n is the total sample size, s is the number of adults with SAL, and p̂ = s/n; f = n/N is the
sampling fraction; avg0 is the average of the selection probabilities for y = 0 (SAL, no) and avg1 is the average of the selection
probabilities for y = 1 (SAL, yes) (f , avg0, avg1 must be multiplied by 10−3); p-value corresponds to that of a chi-squared test
of equality of θu0 = θu1, u = 1, . . . , 5.

The proportion of individuals with SAL is relatively large for low level education. We have compared
the counts in the two sets of bins from the histograms of the selection probabilities for y = 0, 1.
In fact, this is a test of independence in a 2 × 5 categorical table, and we use a chi-squared test of
θu0 = θu1, u = 1, . . . ,U (U = 5). The p-values are presented in the last column of Table 1. As
is evident from the p-value, selection bias should matter mostly in Domain LMW and perhaps in
Domains LFW, MMB and HFW. However, to see the differences clearer, we have plotted the sampling
distributions (obtained using kernel density estimation) of the selection probabilities in Fig. 1. We
have compared the distributions of the two responses (y = 0 and y = 1) by domain. There are
important differences especially in the tails of the distributions. It is worth noting that there are
significant differences between the two responses inmany domains (e.g., LMW, LFW, LFB, MMB, MFB,
HMW and HWB).

To specify θ
˜

(0)
y in the prior distributions, θ

˜
y

ind
∼ Dirichlet(θ

˜

(0)
y ), we take θ

˜

(0)
y = θ̂

˜
y, the maximum

likelihood estimator of θ
˜
y, y = 0, 1. Following MDC, we show how to obtain the MLE in Appendix B.

In Table 2,we compare summaries of the finite population proportion under the ignorable selection
model (IGM) and nonignorable selectionmodel (NIGM) for the 10 domains.We compare the posterior
means (PM), posterior standard deviations (PSD) and 95% highest posterior density (HPD) intervals.
We note that numerical standard errors of the PMs, obtained by the batch means method, are smaller
than 0.001. The effect of the selection bias is seen because the PMs under the NIGM are smaller, and
for some domainsmuch smaller, than under the IGM for every domain. It is also interesting that for all
domains, except for LMB, the PSDs under NIGM are slightly smaller than under IGM, thereby leading
to slightly shorter HPD intervals. But what is remarkable is that all the HPD intervals for NIG, except
the one for domain LMB, are to the left of those for IGM andwithout any overlap. Thus, these selection
probabilities have a substantial effect.

In Fig. 2 we have shown plots of the empirical posterior densities of the finite population propor-
tions. (These are obtained using the Rosenbaltt–Parzen kernel density estimator.) These plots show
that the proportions are all approximately normally distributed, and this is expected because of the
large sample sizes within the domains. More importantly, these plots show that the selection bias
is important because, except for the domain LMB, the posterior distributions for the nonignorable
selection model are mostly to the left of those for the ignorable selection model.

It is provocative to investigate these results if the population size is much smaller (relative to the
sample size) than the original population. So we decide to subsample the data from each domain to
get smaller sample and population sizes. For each domain, we take a simple random sample of 20%
of the adults and we reduce the population size to 20 times the sample size (i.e., 5% sampling). It
becomes necessary to adjust the survey weights to reflect the population sizes. Then we fit both the
ignorable and nonignorable selection models to the new data. The posterior summaries are shown
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Fig. 1. Plots of the sampling densities of the selection probabilities by domains (dotted: SAL; solid: no SAL). The values on the
horizontal axes must be multiplied by 0.0001 to get the selection probabilities.

in Table 3. Again the PMs under IGM are larger (for some domains, more than two times as much)
than those under NIGM, and except for domains LMW and LMB, the PSDs under NIGM are smaller
than those under IGM. Also, the 95% HPD intervals under NIGM are to the left of those from the IGM,
with overlaps in a few domains. Thus, the results are similar to the NHIS 95 data, but there are much
sharper distinctions between the two models.
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Table 2
Comparison of the ignorable and nonignorable selection models using summaries of the posterior distributions of the finite
population proportion by domain.

Domain Ignorable Nonignorable
PM PSD CI PM PSD CI

LMW 0.154 0.009 (0.136, 0.172) 0.083 0.007 (0.070, 0.098)
LMB 0.269 0.025 (0.219, 0.319) 0.192 0.028 (0.143, 0.250)
LFW 0.134 0.008 (0.119, 0.149) 0.068 0.005 (0.059, 0.078)
LFB 0.192 0.020 (0.155, 0.231) 0.113 0.014 (0.089, 0.144)
MMW 0.075 0.003 (0.069, 0.081) 0.024 0.001 (0.022, 0.026)
MMB 0.122 0.008 (0.106, 0.139) 0.060 0.005 (0.052, 0.070)
MFW 0.060 0.002 (0.055, 0.065) 0.019 0.001 (0.017, 0.020)
MFB 0.089 0.006 (0.077, 0.102) 0.043 0.003 (0.037, 0.050)
HMW 0.030 0.002 (0.027, 0.034) 0.009 0.001 (0.008, 0.011)
HMB 0.042 0.006 (0.032, 0.053) 0.019 0.003 (0.014, 0.025)
HFW 0.035 0.002 (0.031, 0.040) 0.010 0.001 (0.009, 0.011)
HFB 0.038 0.005 (0.030, 0.048) 0.016 0.002 (0.013, 0.020)

Note: Domains are formed by crossing education (pre-college: L, college: M and post-college: H), sex (male: M, female: F) and
race (white:W, black: B). Here PM is the posterior mean, PSD is the posterior standard deviation and CI is the 95% HPD interval.
The numerical standard errors of the PMs are generally much smaller than 0.001 for most domains.

Table 3
Comparison of the ignorable and nonignorable selection models using summaries of the posterior distributions of the finite
population proportion with reduced sample size and population size by domain.

Domain Ignorable Nonignorable
PM PSD CI PM PSD CI

LMW 0.212 0.020 (0.175, 0.254) 0.111 0.036 (0.067, 0.208)
LMB 0.315 0.055 (0.213, 0.434) 0.219 0.058 (0.120, 0.342)
LFW 0.167 0.017 (0.136, 0.202) 0.080 0.014 (0.057, 0.108)
LFB 0.142 0.033 (0.087, 0.216) 0.066 0.025 (0.028, 0.121)
MMW 0.089 0.006 (0.077, 0.102) 0.024 0.002 (0.019, 0.029)
MMB 0.176 0.020 (0.138, 0.217) 0.092 0.015 (0.065, 0.121)
MFW 0.082 0.006 (0.072, 0.095) 0.023 0.002 (0.019, 0.028)
MFB 0.106 0.013 (0.082, 0.133) 0.047 0.008 (0.032, 0.063)
HMW 0.037 0.004 (0.028, 0.045) 0.010 0.002 (0.007, 0.013)
HMB 0.045 0.012 (0.024, 0.070) 0.019 0.007 (0.009, 0.034)
HFW 0.046 0.005 (0.037, 0.056) 0.011 0.002 (0.008, 0.015)
HFB 0.061 0.012 (0.040, 0.085) 0.030 0.007 (0.017, 0.046)

Note: Domains are formed by crossing education (pre-college: L, college: M and post-college: H), sex (male: M, female: F) and
race (white:W, black: B). Here PM is the posterior mean, PSD is the posterior standard deviation and CI is the 95% HPD interval.
The numerical standard errors of the PMs are generally much smaller than 0.002 for most domains. The sample sizes are 20%
of the NHIS 95 and the population sizes are 20 times the sample sizes.

In Fig. 3 we have shown plots of the posterior densities of the finite population proportions using
these reduced sample sizes and population sizes for the domains. Many of the posterior densities
overlap, with a few still not overlapping. Thus, there is clear difference for smaller sample sizes. It
appears that when the sample sizes are smaller, the effect of selection bias is smaller. One possible
reason for this is that the selection probabilities for adults with SAL and those without may be similar.

We also study sensitivity to the specification of the hyperparameters θ
˜

(0)
y , y = 0, 1. Our specifica-

tions are θ
˜

(0)
y = θ̂

˜
y, y = 0, 1, where θ̂

˜
y are the MLEs of θ

˜
y. Our alternative for a sensitivity analysis is

θ
˜

(0)
y = (1, . . . , 1)′, y = 0, 1, which we call a ‘uniform’ prior; here τ = 5. Thus, for the MLE prior, we

have θ
˜
y | τ

ind
∼ Dirichlet(θ̂

˜
yτ) and for the uniform prior we have θ

˜
y |

i.i.d.
∼ Dirichlet(1, . . . , 1). (Note

that there is no unknown τ in the uniform prior.)
In Table 4, we compare inference of the finite population proportion from the MLE prior and the

uniform prior for the original samples and population sizes. The PMs, PSDs and 95% HPD intervals
are virtually the same. Thus, we consider using the reduced sample sizes and population sizes for
the sensitivity analysis as well. In Table 5, we compare inference of the finite population proportion
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Fig. 2. Plots of the empirical posterior densities of the finite population proportions by domains (dotted: nonignorable selection
model; solid: ignorable selection model).

from theMLE prior and the uniform prior for the reduced samples and population sizes. Now there are
some differences, and these can bemainly seen in domain LMW; here the posteriormeans of the finite
population proportion are 0.144 vs. 0.145, the posterior standard deviations are 0.034 vs. 0.040 and
the 95% HPD intervals are (0.102, 0.238) vs. (0.098, 0.261), but clearly these are small. We compare
the posterior densities of the finite population proportions in Fig. 4, where we can hardly see any
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Fig. 3. Plots of the empirical posterior densities of the finite population proportions by domains (dotted: nonignorable selection
model; solid: ignorable selection model) for the reduced sample size.

difference in these posterior densities by domain. Thus, a priori we can take θ
˜
y

i.i.d.
∼ Dirichlet(1, . . . , 1)

and, indeed, it is informative that we do not really need to bother about specifying θ
˜

(0)
y , y = 0, 1 at

the MLEs.
Our examples show that it is important to include a component for the selection bias into a model,

otherwise there is likely to be misleading estimates of the finite population proportion.
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Fig. 4. Plots of the empirical posterior densities of the finite population proportions under the nonignorable selection model
by domains (solid: MLE; dotted: Uniform) for the reduced sample size.

4. Concluding remarks

Wehave constructed a hierarchical Bayesianmodel to accommodate selection biaswhen inference
is required for a finite population proportion. We have extended the work of Malec et al. [8] in
a direction different from that of Nandram and Choi [12]. We have shown how to accommodate
a mild nonidentifiability in the model and have provided a full Bayesian analysis when some
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Table 4
Sensitivity of posterior inference about the finite population proportion to the prior specification of the nonignorable selection
model.

Domain MLE Uniform
PM PSD CI PM PSD CI

LMW 0.083 0.007 (0.070, 0.098) 0.082 0.007 (0.070, 0.098)
LMB 0.192 0.028 (0.143, 0.250) 0.189 0.028 (0.140, 0.247)
LFW 0.068 0.005 (0.059, 0.078) 0.068 0.005 (0.059, 0.078)
LFB 0.113 0.014 (0.089, 0.144) 0.112 0.014 (0.087, 0.142)
MMW 0.024 0.001 (0.022, 0.026) 0.024 0.001 (0.022, 0.026)
MMB 0.060 0.005 (0.052, 0.070) 0.060 0.005 (0.052, 0.070)
MFW 0.019 0.001 (0.017, 0.020) 0.019 0.001 (0.017, 0.020)
MFB 0.043 0.003 (0.037, 0.050) 0.043 0.003 (0.037, 0.050)
HMW 0.009 0.001 (0.008, 0.011) 0.009 0.001 (0.008, 0.011)
HMB 0.019 0.003 (0.014, 0.025) 0.019 0.003 (0.014, 0.025)
HFW 0.010 0.001 (0.009, 0.011) 0.010 0.001 (0.009, 0.011)
HFB 0.016 0.002 (0.013, 0.020) 0.016 0.002 (0.013, 0.020)

Note: Domains are formed by crossing education (pre-college: L, college: M and post-college: H), sex (male: M, female: F) and
race (white:W, black: B). Here PM is the posterior mean, PSD is the posterior standard deviation and CI is the 95% HPD interval.
The numerical standard errors of the PMs are generally much smaller than 0.002 for most domains. This is a comparison of

posterior inference about the finite population proportion using two different prior distributions, θ
˜
y | τ

ind
∼ Dirichlet(θ̂

˜
yτ), y =

0, 1 (MLE) and θ
˜
y

i.i.d.
∼ Dirichlet{(1, . . . , 5)}, y = 0, 1 (uniform).

Table 5
Sensitivity of posterior inference about the finite population proportion to the prior specification of the nonignorable selection
model with reduced sample size and population size.

Domain MLE Uniform
PM PSD CI PM PSD CI

LMW 0.144 0.034 (0.102, 0.238) 0.145 0.040 (0.098, 0.261)
LMB 0.275 0.055 (0.180, 0.391) 0.272 0.052 (0.180, 0.389)
LFW 0.109 0.013 (0.088, 0.135) 0.109 0.013 (0.087, 0.136)
LFB 0.111 0.024 (0.075, 0.163) 0.110 0.022 (0.075, 0.158)
MMW 0.041 0.002 (0.037, 0.046) 0.041 0.002 (0.037, 0.046)
MMB 0.118 0.014 (0.093, 0.146) 0.117 0.014 (0.091, 0.145)
MFW 0.037 0.002 (0.033, 0.042) 0.037 0.002 (0.033, 0.041)
MFB 0.067 0.008 (0.053, 0.082) 0.067 0.008 (0.053, 0.083)
HMW 0.017 0.001 (0.014, 0.020) 0.017 0.002 (0.014, 0.020)
HMB 0.029 0.006 (0.018, 0.043) 0.028 0.006 (0.019, 0.042)
HFW 0.020 0.002 (0.017, 0.023) 0.020 0.002 (0.017, 0.023)
HFB 0.038 0.007 (0.026, 0.054) 0.038 0.007 (0.026, 0.053)

Note: Domains are formed by crossing education (pre-college: L, college: M and post-college: H), sex (male: M, female: F)
and race (white: W, black: B). Here PM is the posterior mean, PSD is the posterior standard deviation and CI is the 95% HPD
interval. The numerical standard errors of the PMs are generally much smaller than 0.002 for most domains. The sample sizes
are 20% of the NHIS 95 and the population sizes are 20 times the sample sizes. This is a comparison of posterior inference

about the finite population proportion using two different prior distributions, θ
˜
y | τ

ind
∼ Dirichlet(θ̂

˜
yτ), y = 0, 1 (MLE) and

θ
˜
y

i.i.d.
∼ Dirichlet{(1, . . . , 5)}, y = 0, 1 (uniform).

parameters are specified. We have also shown how to perform the basic Gibbs sampler to provide a
Rao–Blackwellized estimator density estimator for the finite population proportion.We have avoided
the Metropolis–Hastings sampler in this application because it can perform poorly when there are
nonidentifiable parameters in a model. Our nonignorable selection model appears to accommodate
the selection mechanism reasonably well. Moreover, all parameters can be stochastic, and we do not
need to specify the hyper parameters θ

(0)
uy .

There are several additional problems which can be solved using our approach. First, we can think
about another approach to deal with nonidentifiability. One way to do this is to assume that π comes
fromaparametric distribution but stillmaintaining theπ∗

u , u = 1, . . . ,U . Let (tu−1, tu), u = 1, . . . ,U ,
denote the bins formed by the histogram of the πi, the selection probabilities. One can take πi to have
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a common beta distribution truncated in each of the U intervals. So that πi | y
ind
∼ Beta{µyτ , (1 −

µy)τ }, y = 0, 1 and θuy can be calculated from the beta distribution. This will reduce the complete
set of the θuy parameters to just three parameters, µ0, µ1 and τ , because θu0 is a function of µ0 and
τ , and θu1 is a function of µ1 and τ . This will also allow us to increase the number of bins in the
histogram.

A second problem of great interest is on the generalization of our framework to the context of
small-area estimation. Now, interest is on the finite population mean of the rth area. Here, our model
can take a similar formwith different superpopulation proportions in different domains. That is, for ℓ
areas

pr
i.i.d.
∼ Beta{µτ, (1 − µ)τ }, r = 1, . . . , ℓ,

p(µ, τ) =
1

(1 + τ)2
, τ ≥ 0.

Of course, another avenue is to generalize this work to multinomial data. (A Ph.D. student is currently
working on this project.) Clearly, there are numerous situations in which useful work can be done
(e.g., misclassification, nonresponse and other survey designs such as cluster sampling where there is
correlation within groups of data).

Appendix A. Review of a key result of Malec et al. [8]

Malec et al. [8] models the biased selection mechanism assuming that each response is a sample
of size 1 from a stratum of an unknown size. Here, we have a biased sample, y1, . . . , yn, from a finite
population of sizeN . Thus, yi is a sample of size 1 from a stratum of sizeNi which is unknown.Without
loss of generality, we assume that each sampled unit from each imaginary stratum is the first unit
(which itself is representative of the whole stratum). Then, for stratum i, yi1 is the observed binary
response and the nonsampled units are yi2, . . . , yi,Ni . Here we give an update of the derivation in
MDC and we give a faster derivation as well.

Let δij represent a Bernoulli variable for the inclusion of the jth unit in the sample from the ith
stratum. The selection probability for each of these is πij so that δi1 = 1 with probability πi1 and that
δij = 0, j = 2, . . . ,Ni. For the rest of the Appendix, we drop the subscript i. That is, the first unit is a
sample of size 1 from a stratum of size N∗ (not to be confused with the population size N). Then, the
probability distribution associated with the first individual in the sample of size 1 conditional on the
stratum size N∗ is

Pr(δ1 = 1, y1, π1, {δk = 0, yk, πk}k=2,...,N∗ |N∗) = P(δ1 = 1|y1, π1)P(π1|y1)P(y1)

×

N∗
k=2

P(δk = 0|yk, πk)P(πk|yk)P(yk),

where it is assumed that given N∗, δ1, y1, π1 are independent of δk, yk, πk, k = 2, . . . ,N∗. This may
be reasonable since N∗ is assumed to be much bigger than 1. Then,

Pr(δ1 = 1, y1, π1, {δk = 0, yk, πk}k=2,...,N∗ |N∗)

= π1P(π1|y1)P(y1)
N∗
k=2

(1 − πk)P(πk|yk)P(yk), (A.1)

where, for simplicity, P(δk = 1|yk, πk) = πk = P(δk = 1|πk).
By summing over the unobserved components in (A.1), and assuming that the πi can take one of

the known values, π∗
u , u = 1, . . . ,U , we get

Pr(δ1 = 1, y1, π1, {δk = 0}k=2,...,N∗ |N∗)

= π1P(π1|y1)P(y1)

×


y2


π2

. . .

yN∗


πN∗

{(1 − π2)P(π2|y2)P(y2) . . . (1 − πN∗)P(πN∗ |yN∗)P(yN∗)}
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= π1P(π1|y1)P(y1)


1 −


y


u

π∗

u P(π∗

u |y)P(y)

N∗
−1

. (A.2)

Now, assuming a noninformative prior for N∗ with P(N∗) = 1,N∗
≥ 1,

Pr(δ1 = 1, y1, π1, {δk = 0}k=2,...,N∗ ,N∗)

∝ P(δ1, y1, π1, {δk = 0}k≠1 |N∗)

= π1P(π1|y1)P(y1)


1 −


y


u

π∗

u P(π∗

u |y)P(y)

N∗
−1

.

Since N∗ is unknown, we integrate it out. This is accommodated using the formula for the sum of a
geometric series with


π∗
u P(π∗

u |y)P(y) < 1. We get

Pr(δ1 = 1, y1 = y, π1 = π∗

u , {δk = 0}k≥2)

∝ π∗

u P(π∗

u |y)P(y)
∞

N∗=1


1 −


y


u

π∗

u P(π∗

u |y)P(y)

N∗
−1

=
π∗
u P(π∗

u |y)P(y)
y


u

π∗
u P(π∗

u |y)P(y)
.

Thus, we have

Pr

δ1 = 1, y1 = y, π1 = π∗

u , {δk = 0}k≥2 | θ
˜
, p


∝
π∗
u θuyP(y1 = y | p)

y


u

π∗
u θuyP(y1 = y | p)

. (A.3)

Finally, the joint conditional probability mass function of π1 and y1 is

Pr(y1 = y, π1 = π∗

u |θ
˜
, p, δ1 = 1, {δk = 0}k≥2)

∝
P

y1 = y, π1 = π∗

u , δ1 = 1, {δk = 0 | θ
˜
, p}k≥2


P

δ1 = 1, {δk = 0}k≥2 | θ

˜
, p
 .

It is now easy to show that

Pr(y1 = y, π1 = π∗

u |θ
˜
, p, δ1 = 1, {δk = 0}k≥2) =

π∗
u θuyP(Y1 = y)

y


u

π∗
u θuyP(Y1 = y)

, (A.4)

where an equality sign replaces the proportionality sign. For convenience, wewill drop the condition-
ing on (δ1 = 1, {δk = 0}k≥2), although it holds.

It is also interesting that we can develop (A.4) much faster than was done by MDC or our new
updated derivation here. Again, let δi, πi, yi denote the selection indicator, the selection probability
and the binary response of the ith unit in the population. Essentially, MDC postulated that the
(δi, πi, yi) are independent and identically distributed with

P(δi = δ, πi = π∗

u , yi = y | θ
˜
, p)

= P1(δi = δ | πi = π∗

u )P2(πi = π∗

u | yi = y, θ
˜
)P3(yi = y | p)

= (π∗

u )δ(1 − π∗

u )1−δθuypy(1 − p)1−y, δ = 0, 1, π = π∗

u , u = 1, . . . , U, y = 0, 1.

Thus, there is a joint probability mass function for the selection indicator and the response indicator.
Therefore, the model that MDC specified is a nonignorable selection model (i.e., MDC assumed that
the selection mechanism is SNAR). Now because there are no data when δ = 0 (i.e., π and y are both
unobserved), MDC used the conditional probability mass function

P(πi = π∗

u , yi = y | δi = 1, θ
˜
, p) =

π∗
u θuypy(1 − p)1−y

1
y=0

U
u=1

π∗
u θuypy(1 − p)1−y

,

exactly the probability mass function in (A.4). In our work we drop the notation δi = 1.
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Appendix B. Specifications of the hyperparameters θ
(0)
uy

For y = 0, 1, the maximum likelihood estimators, θ̂uy, are used to specify θ
(0)
uy , y = 0, 1. Note that

Malec et al. [8] used the maximum likelihood estimators to obtain a Bayes empirical Bayes analysis.
Using (4), we get P(π1 = π∗

u |Y1 = y, θ
˜
) = π∗

u θuy/


u π∗
u θuy. Assuming that theπi are independent

and identically distributed, the likelihood function for each y is

L(θ
˜
y) =


u

 π∗
u θuy

u
π∗
u θuy

guy

, y = 0, 1. (B.1)

This likelihood function corresponds to a multinomial mass function with

(g1y, . . . , gUy)′ | θ
˜
y ∼ Multinomial


U

u=1

guy, (v1, . . . , vU)′


, y = 0, 1,

where vu = π∗
u θuy/


u π∗

u θuy and we are conditioning on
U

u=1 guy. Therefore, the MLE of π∗
u θuy/

u π∗
u θuy is guy/

U
u=1 guy, u = 1, . . . ,U , and by the invariance principle, the MLEs of the θuy are

given by

π∗
u θ̂uy

u
π∗
u θ̂uy

=
guy
u
guy

. (B.2)

In (B.2), π∗
u θuy ∝ guy, u = 1, . . . ,U . Therefore, π∗

u θuy = kguy, where k = 1/


u(guy/π
∗
u ). Thus, the

MLE of θuy is θ̂uy = (guy/π∗
u )/


u(guy/π

∗
u ), and we specify θ

(0)
uy as

θ (0)
uy =

(guy/π∗
u )

u
(guy/π∗

u )
, u = 1, . . . , U, y = 0, 1.

While the MLEs are obtained, other issues will arise when the θuy are stochastic.
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