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� We model PM10-mortality relationships for five Indian cities across climate zones.
� Higher relative health benefits for pollution reduction in cleaner cities.
� No significant modification effect of temperature on PM10-mortality association.
� The effect observed in this study is similar to those observed in other countries.
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a b s t r a c t

Indian cities are among the most polluted areas globally, yet assessments of short term mortality impacts
due to pollution have been limited. Furthermore, studies examining temperature e pollution in-
teractions on mortality are largely absent. Addressing this gap remains important in providing research
evidence to better link health outcomes and air quality standards for India. Daily all-cause mortality,
temperature, humidity and particulate matter less than 10 microns (PM10) data were collected for five
cities e Ahmedabad, Bangalore, Hyderabad, Mumbai and Shimla spanning 2005e2012. Poisson regres-
sion models were developed to study short term impacts of PM10 as well as temperature e pollution
interactions on daily all-cause mortality. We find that excess risk of mortality associated with a 10 mg/m3

PM10 increase is highest for Shimla (1.36%, 95% CI ¼ �0.38%e3.1%) and the least for Ahmedabad (0.16%,
95% CI ¼ �0.31%e0.62%). The corresponding values for Bangalore, Hyderabad and Mumbai are 0.22%
(�0.04%e0.49%), 0.85% (0.06%e1.63%) and 0.2% (0.1%e0.3%) respectively. The relative health benefits of
reducing pollution are higher for cleaner cities (Shimla) as opposed to dirtier cities (Mumbai). Overall we
find that temperature and pollution interactions do not significantly impact mortality for the cities
studied. This is one of the first multi-city studies that assess heterogeneity of air pollution impacts and
possible modification due to temperature in Indian cities that are spread across climatic regions and
topographies. Our findings highlight the need for pursuing stringent pollution control policies in Indian
cities to minimize health impacts.

© 2014 Published by Elsevier Ltd.
1. Introduction

Short term health impacts of air pollution have been extensively
studied for developed countries using time series and case-
crossover studies (Lee et al., 2014; Li et al., 2013; Samet et al.,
2000; Samoli et al., 2008; Schwartz, 2004). These findings have
played an important role in determining air quality standards in the
respective countries. For instance, the U.S. Environmental
(H.H. Dholakia), dhiman@
(A. Garg).
Protection Agency (USEPA) reviews health research every five years
to recommend revisions to National Ambient Air Quality Standards,
as mandated by the Clean Air Act (Bell et al., 2003; USEPA, 1970).
However, epidemiological studies, to inform air pollution policy,
are largely limited in the context of developing countries such as
India (Balakrishnan et al., 2011).

Indian cities today are among the most polluted areas in the
world and it is estimated that outdoor air pollution leads to
approximately 670,000 deaths annually (Lim et al., 2013). In India,
the Central Pollution Control Board (CPCB) set up under the Air Act
of 1981 (MoEF, 1981), is mandated with setting and reviewing the
National Ambient Air Quality Standards (NAAQS). Current
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standards, for particulate matter set by the CPCB (CPCB, 2009) are
much higher than those recommended by the World Health Or-
ganization (Krzyzanowski and Cohen, 2008). In addition, unlike
other countries (Bell et al., 2003; Dominici et al., 2007), the CPCB
does not take into account findings from health literature when
deciding on air quality standards (Balakrishnan et al., 2011). A pe-
riodic review of epidemiological evidence informs policy makers
about current health risks associated with air pollution and sets the
agenda towards finding a balance between reducing health impacts
and the costs of implementing further air pollution controls
(Dominici et al., 2004).

One potential reason for the lack of tight coupling between
ambient air quality standards and health outcomes may be limited
epidemiological evidence in the Indian context. A comprehensive
review of air pollution and health in Asia found only three time-
series studies that examine the short term impacts of air pollu-
tion on mortality for the cities of Delhi and Chennai (Balakrishnan
et al., 2011; HEI, 2010; Rajarathnam et al., 2011).

However, studies for other cities are needed for at least two
important reasons. The first reason is that for a country like India,
cities vary widely in terms of development pathways, sources and
levels of pollution and policy responses to curb pollution. This
presents challenges for generalization of findings from single city
studies to the whole country. Second, a changing climate may likely
alter pollution levels and subsequently modify health risks over
time (Jacob andWinner, 2009; Ren et al., 2006; Tagaris et al., 2009).
Consequently, temperature and pollution interactions for cities that
lie in different climatic regimes may be quite different. An under-
standing of these health risks would play an important role in
shaping policy to thwart air pollution.

To address the aforementioned research gaps, we use a time-
series approach using semi-parametric Poisson regression to
study the short termmortality impacts of particulate matter (PM10)
as well as temperature e pollution interactions for five cities e

Ahmedabad, Bangalore, Hyderabad, Mumbai and Shimla. Being
situated in different climactic zones of India, we hope that the
observations derived from our findings on these cities will give a
fairly good idea about the environmentemortality interaction
patterns prevalent in India as a whole.

2. Methods

2.1. Mortality data

Daily all-cause mortality data were collected from the birth and
death registers of the municipal corporations of Ahmedabad, Ban-
galore, Hyderabad, Mumbai and Shimla. For most cities, informa-
tion on age and cause of death were not available. Table 1
summarizes the climactic characteristics and topography of the
above cities.

India is divided into five climate zones namely e hot and dry,
warm and humid, composite, temperate and cold. The rationale for
choosing these cities was that they are each representative of a
different climate zone. In addition to climate zone, these cities
represent varied topography e plains, plateau, coastal areas and
Table 1
Cities distributed by climate zone.

Climate zone Representative cities Topography

Hot and dry Ahmedabad Plains
Cold Shimla Hilly regions
Temperate Bangalore Plateau
Composite Hyderabad, Lucknow Plains
Warm and humid Mumbai Coastal areas
hilly regions. Air pollution levels vary from city to city based on
sources of pollution and policy measures. Additionally, different
weather patterns maymodify pollution related health risks leading
to wide spatial heterogeneity. Thus our choice of cities provides a
snapshot of differential health risks across India.

2.2. Weather and PM10 data

Daily data on maximum and minimum temperature, relative
humidity and dew point temperature were collected from the In-
dian Meteorological Department (IMD). The IMD has a record of
daily weather variables since the year 1948. Daily measurements of
PM10 were collected from the Central Pollution Control Board
(CPCB) database. These included background monitors in residen-
tial, industrial and other areas designated as ‘sensitive’. Under the
National Ambient Air Quality Monitoring Program (NAMP) the
CPCB monitors four criteria pollutants i.e. Sulphur Dioxide (SO2),
Oxides of Nitrogen (NOx), Total suspended particles (TSP) and
particulate matter less than 10 microns (PM10) for 342 stations
located in 127 cities across India.

Typically twomeasurements are taken per week for each station
implying that 100e120 observations are available per year. These
measurements are made available through the CPCB website and
the values reported are a 24-hr average. Every city has a different
number of air quality monitors that range from one in Shimla to
nine in Hyderabad. For a given year, if any monitor had less than
75% of recorded observations (i.e. less than 90 observations), then it
was not used in the analysis. Scatterplots of daily mortality, PM10
concentrations and temperature for the different cities are shown
in the supplementary material.

To create a population level exposure series for particulate
matter, we used the centering approach described by Schwartz
(2000). For each monitor, the mean (overall observations) of that
particular monitor was subtracted from each observation. This
demeaned data was then divided by the standard deviation of that
particular monitor to get a standardized series for that monitor.
This process was repeated for all monitors in a given city. The
standardized series across all monitors was averaged to get one
single series. Finally, this single series was multiplied by the stan-
dard deviation of all monitors taken together and the mean of all
monitors taken together was added back to each observation
(Schwartz, 2000). The resultant series was the final exposure series
used in the regression model.

After creating the final exposure series, we dropped all obser-
vations where pollution data was not available (i.e. complete case
analysis). For this dataset, the final exposure series for PM10 was
shifted (lagged) by one observation. This would relate the deaths on
a given day to a PM value roughly three days prior (i.e. for instance
deaths on June 4 are associated with pollution value measured on
June 1; deaths on June 7 are associated with pollution value
measured on June 4 and so on).

2.3. Analytical models

We adopted a semi-parametric regression framework to
develop the exposure e response relationship between air pollu-
tion and mortality for the sampled cities (Balakrishnan et al., 2011;
Peng et al., 2006; Rajarathnam et al., 2011). The logarithm of daily
expected deaths was modelled as a function of daily air pollution
measurements in the presence of other confounding variables such
as temperature and humidity. We assumed deaths to follow an
over-dispersed Poisson distribution i.e. E(Yt) ¼ mt and Var(Yt) ¼ fmt
where f is the overedispersion parameter. This is an accepted
assumption for pollution studies (Dominici et al., 2004). Smooth
functions were used to control for effects of daily temperature,
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humidity and seasonal and long term trends as these are non-
linearly related to mortality (see supplementary material figures).
Thus the regression equation can be expressed as:

Log
h
E
�
Yij

�i
¼ bPM10i;j�1 þ

XP

j¼1
g
�
xij
�þ DOWij þ Hij þ εij

(1)

where Yij is the daily mortality count for the ith city on the jth day
and is assumed to follow an over-dispersed Poisson distribution.
The pollution (PM10) measurement for the ith city on the jth day
lagged by one observation is represented using bPM10i,j�1. The
covariates xij represent daily temperature, relative humidity and
time for the ith city on the jth day. The effects are expressed by an
unknown smooth function gð�Þ constructed using natural cubic
splines. Details about the structure of gð�Þ are given in the
supplementary material. An indicator variable for each day of week
is given by DOWij. Public holidays were controlled for using an
indicator variable given by Hij. The error term is modelled using εij.
The parameter of interest is b associated with the pollution variable
(PM10). This parameter gives an estimate of the increase in mor-
tality associated with a unit change in PM10 concentrations.

For temperature, humidity and time, the amount of smoothness
(i.e. optimal degrees of freedom) was determined based on the
approach by Dominici et al. (2004). The underlying idea is that b is
sensitive to degrees of freedom selected for temperature, humidity
and time. The approach by Dominici et al. (2004), where optimal
degrees of freedomare chosen such that they predict PM10 instead of
daily mortality, provides asymptotically unbiased estimates of the b

parameter. The details of the algorithm implemented to arrive at
these optimal values have beenprovided as supplementarymaterial.

Mortality impacts related to pollution may be delayed i.e. ex-
posures on preceding days may determine current health outcomes
(Bhaskaran et al., 2013; Braga et al., 2001). The lack of daily PM10
measurements did not allow for use of distributed lag models as
this may introduce large errors (Braga et al., 2001; Zanobetti et al.,
2000). Instead we lagged the exposure series by one observation as
suggested by Balakrishnan et al. (2011).
2.4. Sensitivity analysis

In order to compare some plausible scenarios, a sensitivity
analysis was undertakenwhere the estimates (b) were tested using
(i) zero lags for the pollution variable; (ii) minimum temperature
instead of maximum temperature and (iii) including other pollut-
ants such as sulphur dioxide.
2.5. Temperature e pollution interactions

To study the interaction effects of temperature and pollution
(PM10) on mortality, we used two approaches. The first approach,
suggested by Ren et al. (2006), involved fitting Equation (1) with an
interaction term to capture the joint effects of pollution and tem-
perature. This model is given in Equation (2). The term tij*PM10ij
expresses the interaction between daily temperature and pollution
while its effect is quantified by the coefficient a.

Log
h
E
�
Yij

�i
¼ bPM10i;j�1 þ

XP

j¼1
g
�
xij
�þ a

�
tij*PM10ij

�þ DOWij

þ Hij þ εij

(2)

If the interaction term (a) is found to be significant, then a
second model is used to understand if interaction effects are more
significant during hotter or colder temperatures.
The second approach, described by Chen et al. (2014), involves
dividing temperature into different levels and then studying the
temperaturee pollution interaction for each level. For each city, we
divided the temperature into four quartiles. We then estimated
Equation (2) for each of the four quartiles.

2.6. Software

All analysis was performed in the statistical environment R
version 2.15.1. The package mgcv (version 1.7e24) was used to fit
the models described in Equations (1) and (2). The package ggplot2
(version 0.9.3.1) was used for graphical representations.

3. Results

3.1. Summary statistics

As seen in Table 2, there is wide variation among different cities
when it comes to daily pollution levels, mortality, temperature, as
well as number of complete observations available for analysis. The
highest PM10 levels are observed for Mumbai (174.4 ± 86.6) and the
lowest for Shimla (54.4 ± 25.2). The daily number of deaths varies
across cities and is linked to population size. Shimla had the lowest
number of daily deaths (4.2 ± 2.7) whereas Mumbai (225.6 ± 30.7)
had the highest.

Each city had a different number of air quality monitors. The
number of air quality monitors ranged from one in Shimla to nine
in Hyderabad. For every air quality monitor, percentage of
missing data by year varied (see Table S1 in supplementary
material). Air pollution impacts were estimated for the period
of 2008e09 for Hyderabad and Bangalore; from 2005 to 2009 for
Ahmedabad; from 2005 to 2011 for Mumbai and 2006e2009 for
Shimla.

3.2. Exposure e response estimates

The percentage increase in mortality associated with a 10 mg/m3

increase in PM10 is reported in Table 3. The highest increase was
seen for Shimla (1.36%) and the least for Ahmedabad (0.16%). Ban-
galore and Mumbai showed similar results with a 0.22% and 0.20%
mortality increase respectively. The dosageeresponse curves for
each city are provided in the supplementary material (Figure eS.13
to eS.17).

The sensitivity analysis showed that mortality estimates were
lower when no lag for pollution was used, across all cities. The
estimates of the core model did not change significantly if mini-
mum temperature was used as a confounding variable. The in-
clusion of SO2 reduced the impact of PM10 on mortality for
Hyderabad and Mumbai, although, these differences were not
significant. In addition, no significant interaction effect (at a 5%
level) between temperature and pollution on mortality was
observed. Table 4 and Table 5 show the estimates, standard errors
and p-values for the interaction term between temperature and
pollution.

3.3. Comparison with other studies

Our results are in close agreement with previous studies
(Balakrishnan et al., 2011; Rajarathnam et al., 2011; Romieu et al.,
2012), which find 0.44% (95% CI ¼ 0.17e0.71) for 0.15% (95%
CI ¼ 0.07e0.23) increase in mortality for every 10 mg/m3 PM10 in-
crease for Chennai (Balakrishnan et al., 2011), and Delhi
(Rajarathnam et al., 2011), respectively. The APHENA Study exam-
ined associations between PM10 and mortality as well as hospital
admissions across multiple cities in United States, Europe and



Table 2
Observed values for different variables across cities (mean ± standard deviation).

City Temperature (�C) Relative humidity (%) Daily deaths PM10 (mg/m3) No of complete observations

Maximum Minimum

Ahmedabad 34.3 ± 4.6 21.5 ± 5.6 56.7 ± 17.8 100 ± 18 93.9 ± 58.7 602
Bangalore 29.4 ± 2.7 18.7 ± 2.3 66.6 ± 15.5 120.7 ± 17 108.3 ± 69.8 307
Hyderabad 33.6 ± 3.8 20.7 ± 3.6 53.1 ± 17.6 74.7 ± 16.2 80.4 ± 21.9 498
Mumbai 32.3 ± 2.4 22.7 ± 4.05 69.2 ± 13.8 225.6 ± 30.7 174.4 ± 86.6 2012
Shimla 20 ± 5.1 11.2 ± 5.3 NA 4.2 ± 2.7 54.4 ± 25.2 962

*NA e No data available.

Table 3
Percentage increase in mortality for every 10 mg/m3 PM10 increase.

Core model Sensitivity analysis

No lag for PM Minimum
temperature

SO2 included

Ahmedabad
(95% CI)

0.16% (�0.31
to 0.62)

0.06% (�0.42
to 0.55)

0.12% (�0.36 to
0.61)

�0.32% (�1.01
to 0.38)

Bangalore
(95% CI)

0.22% (�0.04
to 0.49)

0.16% (�0.11
to 0.43)

0.17% (�0.09 to
0.43)

0.23% (�0.18 to
0.64)

Hyderabad
(95% CI)

0.85% (0.06 to
1.63)

0.48% (�0.30
to 1.27)

0.83% (0.04 to
1.62)

0.41% (�0.69 to
1.51)

Mumbai (95%
CI)

0.20% (0.10 to
0.30)

0.18% (0.08 to
0.27)

0.16% (0.06 to
0.25)

0.13% (0.04 to
0.23)

Shimlaa (95%
CI)

1.36% (�0.38
to 3.1)

0.97% (�0.83
to 2.7)

0.54% (�1.17 to
2.27)

e

Negative values imply that the effect of pollution on mortality is not significant.
a No humidity and SO2 measurements were available for Shimla; Values in the

brackets represent 95% confidence intervals.

Table 4
Interaction effects of temperature and pollution for all cities (based on approach by
Ren et al., 2006).

City b co-efficient Std. error p e value

Ahmedabad 0.00328 0.00202 0.11
Bangalore 0.00607 0.00473 0.20
Hyderabad 0.00759 0.00757 0.31
Mumbai �0.00380 0.00281 0.16
Shimla �0.00007 0.00054 0.89

Table 5
Interaction effects (p-value) and [range] across different temperature levels for all
cities (based on approach by Chen et al., 2014).

Ahmedabad Bangalore Hyderabad Mumbai Shimla

Lowest
Quartile

�0.00005
(0.81)
[20.3
e31 �C]

0.00077
(0.05)
[21.2
e27.5 �C]

0.00077
(0.28)
[22.6
e30.7 �C]

�0.00012
(<0.01)
[19.8
e30.8 �C]

�0.00027
(0.68)
[0.6e17 �C]

Second
Quartile

�0.00053
(0.37)
[31.1
e34 �C]

�0.00105
(0.08)
[27.6
e29.3 �C]

�0.00060
(0.42)
[30.8
e33.1 �C]

0.00013
(0.39)
[30.9
e32.5 �C]

�0.00215
(0.45)
[17.1
e21 �C]

Third
Quartile

0.00009
(0.85)
[34.1
e37.2 �C]

0.00007
(0.92)
[29.4
e30.7 �C]

0.00158
(0.25)
[33.2
e35.9 �C]

�0.00009
(0.39)
[32.6e34 �C]

�0.00106
(0.43)
[21.1
e23.4 �C]

Highest
Quartile

�0.00033
(0.29)
[37.3
e44.4 �C]

0.00013
(0.48)
[30.8
e36.7 �C]

�0.00017
(0.83)
[36
e43.4 �C]

0.00004
(0.53)
[34.1
e41.3 �C]

�0.00089
(0.32)
[23.5
e31 �C]
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Canada. They found that average all causemortality risks associated
with PM10 across all ages were 0.36% (95% CI ¼ 0.21e0.50) for
Europe, 0.38% (95% CI ¼ 0.26e0.50) for United States and 1.1% (95%
CI¼ 0.58e1.6) for Canada (Samoli et al., 2008). These findings imply
that the short termmortality risks associated with pollution are not
very different across cities. However, exposure of the large Indian
population to outdoor pollution translates into a significant in-
crease in mortality. Fig. 1 compares the percentage change in
mortality for every 10 mg/m3 increase in PM10 across different
studies.

4. Discussion

Our study was designed to explore the differences in short term
impacts of air pollution on mortality and possible modification due
to temperature in Indian cities that are spread across climactic
zones and topographies. The results add to the existing body of
epidemiological knowledge in the context of a developing country,
like India.

An interesting finding of our analysis is that cities such as
Ahmedabad and Mumbai that have higher levels of pollution
experience a relatively lower increase in mortality for every 10 mg/
m3 increase in PM10. In contrast, the percentage increase in mor-
tality is highest for Shimlawhich is among the cleanest cities. These
results are corroborated by recent studies that have attempted to
develop a new set of exposure e response relationships linking
pollution and health (Lim et al., 2013; Smith et al., 2013). One of
their main findings was that the impact of pollution on health may
indeed be non-linear in nature i.e. when baseline pollution levels
are high, health benefits associated with reduction in PM10 may be
very small as compared to a situation where baseline pollution
levels are low (Lim et al., 2013; Smith and Peel, 2010; Smith et al.,
2013).

The import of these findings is that small reductions in pollution
in cleaner cities will yield large health benefits, whereas in less
cleaner cities, even large reduction in pollution may yield only
modest health benefits in a relative sense. However, it is not to
suggest that the focus should be on reducing pollution in cleaner
cities alone. On the contrary it underscores the need for rapid and
aggressive policy measures in both types of cities to curb air
pollution. Ambitious targets towards achieving ambient air quality
standards should be set in highly polluted cities. On the other hand,
cleaner cities could leverage significant health gains even by
focussing on small reductions in pollution.

The pollutant of choice in our study was particulate matter less
than 10 mg in size (PM10). This is because it is the most routinely
monitored air pollutant in India. However, there remains the need
to expand routine monitoring to other pollutants such as PM2.5,
black carbon, ozone, benzene, carbon monoxide, polycyclic aro-
matic hydrocarbons and heavy metals.

The differential health impacts of single versus multiple
pollutant models are of interest in epidemiology, although it is
unclear whether including more than one pollutant in the analysis
is necessarily more beneficial as opposed to single pollutant models
(Tolbert et al., 2007). We focussed primarily on the impacts of PM10
on mortality. Inclusion of sulphur dioxide (SO2) along with PM10
did not change our estimates significantly, similar to previous



Fig. 1. Shows the central estimate and 95% confidence intervals for percentage increase in all cause mortality with every 10 mg/m3 increase in PM10 at Lag 1. We compare estimates
for five cities analyzed in this study with those from selected previous studies.
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findings (Rajarathnam et al., 2011). High percentage of missing data
precluded incorporating nitrous oxides (NOx) in our modelling
framework. This is a limitation of our study and remains an
important area of future studies and research.

In the context of our modelling framework, we did not find
significant impacts of temperature-pollution interactions on mor-
tality for the cities studied. This may be because temperature e

pollution interactions are highly complex and non-linear and
therefore may not have been captured adequately in the current
model framework. Some studies e.g. Ren et al. (2006), have used
more complex approaches such as modelling of the interaction
using locally weighted smoothing functions (LOESS). However, a
key limitation of such complex models is the inability to interpret
estimates in an intuitive manner. Furthermore, the results from
previous studies are varied implying that interaction effects may be
city specific in nature. For instance, within the United States alone,
Ren et al. (2008), found that while ozone modified the temperature
mortality relationship in northern cities, no such effects were
observed for southern cities. Further research is needed to better
understand how temperature and pollution interactions influence
health risks across cities in India.

One key limitation of our dataset is that there were significant
missing data for the different air quality monitors across cities
except Mumbai. This affected the parameterization and structure of
the semi-parametric model used in our analysis. Furthermore, the
fact that pollution estimates were not significant for Ahmedabad
and Shimla may be a reflection of measurement error. Needless to
say, better monitoring will help in developing more accurate
exposure e response relationships across cities.

To create a consistent exposure series, Balakrishnan et al. (2011),
developed a spatial model for Chennai. A 0.5 square kilometre grid
was superimposed on a map of zones in the city. For each grid cell,
PM values of the nearest AQM (measured as distance from centroid
of grid to AQM) were assigned. For each zone, the PM exposure
series was an average of the air quality reading on a particular day
weighted by the number of grid cells it was assigned to in the zone.
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This approach was preferred to a simple average or centering
approach used in this study. Whereas, a spatial model has distinct
advantages, it requires a large amount of disaggregated information
such as daily number of deaths in different zones of the city. Since
that information was not available for cities in the current study, a
centering approach was adopted. The advantage of the centering
approach is that although a difference in measurements across
monitors may influence variability of the exposure series and lead
to underestimates, the slope co-efficient (i.e. b) corresponding to
the pollution parameter (i.e. PM10) remains unchanged if one or
several AQM's are used (Balakrishnan et al., 2011; Rajarathnam
et al., 2011; Wong et al., 2001).

Though it has been pointed out that impacts of air pollution is
primarily linked to cardio-respiratory mortality (Pope III et al.,
2002; Samoli et al., 2014; USEPA, 2009), the present study only
examined all-cause mortality. This was because information on
cause-of-death and age groups was not available for the cities
which were considered. Mortality in India is underreported and on
an average only 67% of all deaths gets registered, with high vari-
ability across different states (Dhar, 2013). Of these, it is only
institutional deaths that contain information on cause of death.
This remains a limitation of the study. It is vital for future studies to
enhance the quality of mortality registration data in India.

In conclusion, the study of air pollution on mortality remains an
important area of research in the Indian context. Clearly there re-
mains a need to strengthen data quality and carry out similar
studies for many more cities. In addition to the time-series
approach used in this study, cohort studies are required to under-
stand air pollution related health risks in India. Epidemiological
evidence can help guide policy by providing evidence to tightly
couple health outcomes and air quality standards, thereby mini-
mizing the impacts of outdoor air pollution in India.
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