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Abstract

Estimation of median income of small areas is one of the principal targets of inference
of the U.S Bureau of Census. These estimates play an important role in the formulation of
various governmental decisions and policies. Since these estimates are collected over time,
they often possess an inherent longitudinal pattern. Taking proper account of this time varying
pattern may result in better estimates for the current or future median household incomes for
a particular state or county. In this study, we put forward a semiparametric modeling proce-
dure for estimating the median household income for all the U.S states. Our models include a
nonparametric functional part for accommodating any unspecified time varying income pattern
and also a state specific random effect to account for the within-state correlation of the income
observations. Model fitting and parameter estimation is carried out in a hierarchical Bayesian
framework using Markov chain Monte Carlo (MCMC) methodology. It is seen that the semi-
parametric model estimates can be superior to both the direct estimates and the Census Bureau
estimates. Overall, our study indicates that proper modeling of the underlying longitudinal
income profiles can improve the performance of model based estimates of household median

income of small areas.

KEY WORDS : Current Population Survey, MCMC, Penalized spline, Random Walk,

Semiparametric Modeling.

1 INTRODUCTION

Sample survey methodologies are widely used for collecting relevant information about a pop-

ulation of interest over time. Apart from providing population level estimates, surveys are also



designed to estimate various features of subpopulations or domains. Domains may be geographic
areas like state or province, county, school district etc. or can even be identified by a particular
socio-demographic characteristic like a specific age-sex group. Sometimes, the domain-specific
sample size may be too small to yield direct estimates of adequate precision. This led to the devel-
opment of small area estimation procedures which specifically deal with the estimation of various
features of small domains. Generally, observations on various characteristics of small areas are
collected over time, and thus, may possess a complicated underlying time-varying pattern. It is
likely that models which exploit the time varying pattern in the observations may perform bet-
ter than classical small area models which do not utilize this feature. In this study, we present
a semiparametric Bayesian framework for the analysis of small area level data which explicitly

accomodates for the longitudinal pattern in the response and the covariates.

1.1 SAIPE Program and Related Methodology

The Small Area Income and Poverty Estimates (SAIPE) program of the U.S Census Bureau was es-
tablished with the aim of providing annual estimates of income and poverty statistics for all states,
counties and school districts across the United States. The resulting estimates are generally used
for the administration of federal programs and the allocation of federal funds to local jurisdictions.
There are also many state and local programs that depend on these estimates. Prior to the creation
of the SAIPE program, the decennial census was the only source of income and poverty statistics
for households, families and individuals related to small geographic areas like counties, cities and
other substate areas. Due to the ten year lag in the release of successive census values, there was a
large gap in information concerning fluctuations in the economic situation of the country in general
and local areas in particular. The establishment of the SAIPE program has largely mitigated this
issue.

The current methodology of the SAIPE program is based on combining state and county esti-
mates of poverty and income obtained from the American Community Survey (ACS) with other

indicators of poverty and income using the Fay-Herriot class of models (Fay and Herriot, 1979).
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The indicators are generally the mean and median adjusted gross income (AGI) from IRS tax
returns, SNAP benefits data (formerly known as Food Stamp Program data), the most recent de-
cennial census, intercensal population estimates, Supplemental Security Income Recipiency and
other economic data obtained from the Bureau of Economic Analysis (BEA). Estimates from ACS
are being used since January 2005 on the recommendation of the National Academy of Sciences
Panel on Estimates of Poverty for Small Geographic Areas (2000). Income and poverty estimates
until 2004 were based on data from the Annual Social and Economic Supplement (ASEC) of the
Current Population Survey (CPS).

Apart from various poverty measures, the SAIPE program provides annual state and county
level estimates of median household income. For illustrating our methodology, we have considered
data from ASEC for the period 1995-1999 in order to estimate the state wide median household
income for 1999. We have then compared our estimates with the corresponding census figures
for 1999. The SAIPE regression model for estimating the median household income for 1999 use
as covariates, the median adjusted gross income (AGI) derived from IRS tax returns and the me-
dian household income estimate for 1999 obtained from the 2000 Census. The response variable
is the direct estimate of median household income for 1999 obtained from the March 2000 CPS.
Bayesian techniques are used to weigh the contributions of the CPS median income estimates and
the regression predictions of the median income based on their relative precision. The standard
deviations of the error terms are estimated by fitting a model to the estimates of sampling error
covariance matrices of the CPS median household income estimates for several years. The mean
function in this model is referred to as a “generalized variance function" (Bell, 1999). Noninfor-
mative prior distributions are placed on the regression parameter corresponding to the IRS median
income since it was found to be statistically significant even in the presence of census data, both in

the 1989 and 1999 models.



1.2 Related Research

Estimation of median income for small areas contributes to the policy making process of many
Federal and State agencies. Before the establishment of the SAIPE program, the estimation of
median income for four-person families was of general interest. The Census Bureau used the
ideas suggested by Fay (1987) in this regard. Estimation was carried out in an empirical Bayes
(EB) framework suggested by Fay, Nelson and Litow (1993). Later, Datta, Ghosh, Nangia and
Natarajan (1996) extended the EB approach of Fay (1987) and also put forward univariate and
multivariate hierarchical Bayes (HB) models. The estimates from their EB and HB procedures
significantly improved over the CPS median income estimates for 1979. Ghosh, Nangia and Kim
(henceforth referred to as GNK) (1996) exploited the repetitive nature of the state-specific CPS
median income estimates and proposed a Bayesian time series modeling framework to estimate
the statewide median income of four-person families for 1989. In doing so, they used a time
specific random component and modeled it as a random walk. They concluded that the bivariate
time series model utilizing the median incomes of four and five person families performs the best
and produces estimates which are much superior to both the CPS and Census Bureau estimates. In
general, the time series model always performed better than its non-time series counterpart.
Semiparametric regression methods have not been used in small area estimation contexts until
recently. This was mainly due to methodological difficulties in combining the different smooth-
ing techniques with the estimation tools generally used in small area estimation. The pioneering
contribution in this regard is the work by Opsomer, Claeskens, Ranalli, Kauermann and Breidt
(2008) in which they combined small area random effects with a smooth, non-parametrically spec-
ified trend using penalized splines. In doing so, they expressed the non-parametric small area
estimation problem as a mixed effects regression model and analyzed it using restricted maximum
likelihood. Theoretical results were presented on the prediction mean squared error and likelihood
ratio tests for random effects. Inference was based on a simple non-parametric bootstrap approach.
The methodology was used to analyze a non-longitudinal, spatial dataset concerning the estimation

of mean acid neutralizing capacity (ANC) of lakes in the north eastern states of U.S.



1.3 Motivation and Overview

The motivation of our work also originates from the repetitive nature of the CPS median income
estimates. But, in contrast to the approach of GNK (1996), we have viewed the state specific annual
household median income values as longitudinal profiles or “income trajectories". This gained
more ground because we used the state wide CPS median household income values for only five
years (1995 - 1999) in our estimation procedure. Figure 1 shows sample longitudinal CPS median
household income profiles for six states spanning 1995 to 2004 while Figures 2a. and 2b. shows
the plots of the CPS median income against the IRS mean and median incomes for all the states
for the years 1995 through 1999. It is apparent that CPS median income may have an underlying
non-linear pattern with respect to IRS mean income, specially for large values of the latter. The
above two features motivated us to use a semiparametric regression approach. In doing so, we
have modeled the income trajectory using penalized spline (or P-spline) (Eilers and Marx, 1996)
which is a commonly used but powerful function estimation tool in non-parametric inference.
The P-spline is expressed using truncated polynomial basis functions with varying degrees and
number of knots, although other types of basis functions like B-splines or thin plate splines can
also be used. We have worked with two types of models viz. a regular semiparametric model
and a semiparamteric random walk model. For each of these models, analysis has been carried
out using a hierarchical Bayesian approach. Since we chose non-informative improper priors for
the regression parameters, propriety of the posterior has been proved before proceeding with the
computations. Markov chain Monte Carlo methodologies, specifically, Gibbs sampling (Gelfand
and Smith, 1990) has been used to obtain the parameter estimates.

We have compared the state-specific estimates of median household income for 1999 with
the corresponding decennial census values in order to test for their accuracy. In doing so, we
observed that the semiparametric model estimates improve upon both the CPS and the SAIPE
estimates. Interestingly, the positioning of the knots had significant influence on the results as will
be discussed later on. We want to mention here that the SAIPE model had a considerable advantage

over ours in that they used the census estimates of the median income for 1999 as a predictor. In



small area estimation problems, the census estimates are regarded as the “gold standard" since these
are the most accurate estimates available with virtually negligible standard errors. So, using those
as explanatory variables was an added advantage of the SAIPE state level models. The fact that
our estimates still improve on the SAIPE model based estimates is a testament to the flexibility and
strength of the semiparametric methodology specially when observations are collected over time.
It also indicates that it may be worthwhile to take into account the longitudinal income patterns in
estimating the current income conditions of the U.S states.

The remaining sections are arranged as follows. In Section 2 we introduce the two types of
semiparametric models we have used. Section 3 goes over the hierarchical Bayesian analysis we
performed. In Section 4, we describe the results of the data analysis with regard to the median
household income dataset. In Section 5, we discuss the Bayesian model assessment procedure
we used to test the goodness-of-fit of our models. We end with a discussion and some references
towards future work in Section 6. The appendix contains the proofs of the posterior propriety and

the expressions of the full conditional distributions.

2 MODEL SPECIFICATION

2.1 General Notation

LetY;; = (Yj1, ..., Yi;s)" be the sample survey estimators of some characteristics 8;; = (6;;1, ..., 0;j5)’
for the i small area at the j*" time (: = 1,2,...,m;j = 1,2, ..., t). The target of inference is gen-
erally 8;; or some function of it. Specifically, in our context, 8;; = 6¢,; which denotes the median
household income of the 7" state at the j year. We are interested in estimating (01, ..., O )’
i.e the median household income for all the states at time u. We may also want to estimate the
difference in median household incomes at times v and u i.e (61, — 014, ..., Oy — Oinw)’. We denote

by X;; the covariate corresponding to the ith state and j* year.



2.2 Semiparametric Income Trajectory Models

We assume the following two semiparametric models :

2.2.1 Model I : Basic Semiparametric Model (SPM)

Let Y;; and X;; denote the CPS median household income and the IRS mean (or median) income

recorded for the 7" state at the j** year. The basic semiparametric model can be expressed as

Yij = f(xiy) +bi +uij + ey (1)

where f(z;;) is an unspecified function of x;; reflecting the unknown response-covariate relation-

ship. We approximate f(x;;) using a P-spline and rewrite (1) as

K
Yij = Bo+ Biwij + o+ Byl + Y ww(wiyy — )5+ i i + e

k=1

= X§;B + Ziyy + bi + uij + e

0i; + € 2)

where 0;; = X3,8 + Zi;~y + b; + u; is our target of inference.

Here X = (1, zij, ..., 20;) , Zij = {(ziy — 1)%, -, (x; — 76)8}Y. 8 = (Bo, ..., Bp)" is the
vector of regression coefficients while v = (71, ...,k ) is the vector of spline coefficients. The
above spline model with degree p can adequately approximate any unspecified smooth function.
Typically, linear (p = 1) or quadratic (p = 2) splines serves most practical purposes since they
ensure adequate smoothness in the fitted curve. m and ¢ respectively denote the number of small
areas and the number of time points at which the response and covariates are measured. Thus,
in our case, m = 51, for the 50 U.S states and the District of Columbia and ¢ = 5 for the years
1995-1999. b; is a state-specific random effect while u;; represents an interaction effect between
the i'" state and the j'* year. We assume b; ~** N(0,07) and v ~ N(0,02I). o2 controls the

amount of smoothing of the underlying income trajectory. Moreover, it is assumed that u;; and e;;



are mutually independent with u;; ~ N(0,%7) and e;; ~ N(0,07;). The ¢;;’s are the sampling
standard deviations corresponding to the CPS direct median income estimates obtained using the
“generalized variance function” technique mentioned in Section 1.1. In the datasets provided by
the Census Bureau, these estimates are given for all the states at each of the time points. The knots

(71, ..., Tic) are usually placed on a grid of equally spaced sample quantiles of z;;’s.

From (1) and (2), we have

which reflects our basic assumption that the true unknown household median income may have an
unspecified variational pattern with the IRS mean (or median) income. Thus, the covariate effect is
expressed by the unspecified nonparametric function f(x;;) which reflects the possible nonlinear

effect of x;; on 0,;.

2.2.2 Model II : Semiparametric Random Walk Model (SPRWM)

Since, for each state, the response and the covariates are collected over time for each state, there
may be a definite trend in their behavior. Thus, we added a time specific random component to (1)

and modeled it as a random walk as follows

Yij = XuB+Ziy +bi + v + ui + e

0:i; + €ij (3)

where 0;; = X3, 8 + Zi; v + b; + v; + uy

Here, v; denotes the time specific random component. We assume that, (v;|vj_1,02) ~
N(v;j_1,02) with vy = 0. Alternatively, we may write, v; = v;_; + w; where w; ~**? N (0, 02).
This is the so-called random walk model and is similar to the systems equations used in dynamic
linear models.

Before proceeding to the next section, we may note that unlike the models of GNK (1996), the

models given in (2) and (3) incorporate state specific random effects (b;). This rectifies a limitation
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of the former as pointed out in Rao (2003).

3 HIERARCHICAL BAYESIAN INFERENCE

3.1 Likelihood Function

Let Y, = (Yi1,...,Y:) be the response and X; = (X;1,...,Xy) and Z; = (Z;1, ..., Z;;)' be the
covariates for the i'" state. Let Q; = (0;, 3,7, b;, P, o2, 03) be the parameter space corresponding
to the i*" state where 8; = (01, ..., ;) and ¥* = (12, ..., 1)?)". Thus, the full parameter space will
be given by 2 = Q; x Qy x ... x ,,. For the 7" state, the likelihood corresponding to Model I

(SPM) can be written as

L(Y3, Xy, Zi|€2;) o< L<Yi‘9i)[’(0i’ﬁa7abiv'poaXi;Zz’)L(bi’Ul?)L('Yla?y)
t
= T {LV105.0%) L(041X08 + Ziyy + b, v3) ) Lbilo?) L(v|0?)
j=1

“)

Here, L(U|a, b) denotes a normal density with mean a and variance b while L(b;|07) and L(~|02)
denotes a normal distribution with mean 0 and variances o7 and 03 respectively.
For the random walk model, the parameter space for the i state would be Q; = (8;, 3,~, b;, v, %>, 07, 02, 00)

where v = (v, ..., v;) is the vector of time specific random effects. Thus, the likelihood function

for the i*" state will have an extra component corresponding to v as follows

t
L(Y;, X3, Z;|%) = ] {L(Yij|€ij, o) L(0:5|X,8 + Zi 7y + bi, 7)) L(vj]vj_, 03)} X

J=1

x L(bi|oy ) L(~y|0?) (5)

where L(v;|vj_1,c2) denotes a normal distribution with mean v;_; and variance o2 where vy = 0.



3.2 Prior Specification

To complete the Bayesian specification of our model, we need to assign prior distributions to the
unknown parameters. We assume noninformative improper uniform prior for the polynomial co-
efficients (or fixed effects) 3 and proper conjugate gamma priors on the inverse of the variance

2 o2%). The prior distributions are assumed to be mutually indepen-

components (17, ..., 17, 07,02, 07

dent. We choose small values (0.001) for the gamma shape and rate parameters to make the priors
diffuse in nature so that inference is mainly controlled by the data distribution.

Thus, we have the following priors : 3 ~ uniform(RP*), (¢2)~" ~ G(c;,d;)(j = 1,...,1),
(07)~" ~ G(c,d), (02)~" ~ G(cy,dy) and (07)~" ~ G(cy,d,). Here X ~ G(a,b) denotes a
gamma distribution with shape parameter a and rate parameter b having the expression f(x) o

% lexp(—bx),z > 0.

3.3 Posterior Distribution and Inference

The full posterior of the parameters given the data is obtained in the usual way by combining the

likelihood and the prior distribution as follows

m t
p(QY. X, Z) o< [T LY, X4, Zi |07 (B)m (037 (03) [] 7(45) ©)
i=1 j=1
For the random walk model, there will be an additional term 7(c?). By the conditional indepen-

dence properties, we can factorize the full posterior as

0.8,7.b,07, 03, {¥1, ... 7} Y, X, Z] < [Y|0][0]8,, b, {41, .., 47}, X, Z][blo] x

t

x[v[o3]18l[o3] o3 TT 5]

=1

Our target of inference is {6,;,7 = 1,...,m;j = 1,...t}, the true median household income
of all the states. Since the marginal posterior distribution of 8;; is analytically intractable, high

dimensional integration needs to be carried out in a theoretical framework. However, this task can
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be easily accomplished in an MCMC framework by using Gibbs sampler to sample from the full
conditionals of 0;; and other relevant parameters. In implementing the Gibbs sampler, we follow
the recommendation of Gelman and Rubin (1992) and run n (> 2) parallel chains. For each chain,
we run 2d iterations with starting points drawn from an overdispersed distribution. To diminish the
effects of the starting distributions, the first d iterations of each chain are discarded and posterior
summaries are calculated based on the rest of the d iterates. The full conditionals for both the

models are given in the appendix.

4 DATA ANALYSIS

We applied the semiparametric models in Section 2.2. to analyze the median household in-
come dataset referred to in Section 1.3. The response variable Y;; and the covariates X;; denote
respectively the CPS median household income estimate and the corresponding IRS mean (or me-
dian) income estimate for the 7" state at the j** year (i = 1, ...,51;j = 1,...,5). The state-specific
mean or median income figures are obtained from IRS tax return data. The Census Bureau gets
files of individual tax return data from the IRS for use in specifically approved projects such as
SAIPE. For each state, the IRS mean (median) income is the mean (median) adjusted gross in-
come (AGI) across all the tax returns in that state. Like other SAIPE model covariates obtained
from administrative records data, these variables do not exactly measure the median income across
all households in the state. One of the reasons for this is that the AGI would not necessarily be the
same as the exact income figure and the tax return universe does not cover the entire population
i.e some households do not need to file tax returns, and those that do not are likely to differ in
regard to income than those that do. However, the use of the mean or median AGI as a covariate
only requires it to be correlated with median household income, not necessarily be the same thing.
Specifically for this study, we have used IRS mean income as our covariate. This is because, it
seems to possess an underlying non-linear relationship with the CPS median income (Figure 2a),

and so it is more suited to a semiparametric analysis.
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4.1 Comparison Measures and Knot Specification

Our dataset originally contained the median household income of all the U.S states and the District
of Columbia for the years 1995-2004. However, we only used the information for the five year
period 1995-1999 since our target of inference are the state specific median household incomes
for 1999. We evaluated the performance of our estimates by comparing them to the corresponding
census figures for 1999. This is because, in small area estimation problems, the census estimates
are often treated as “gold standard” against which all other estimates are compared. However,
such a comparison is only possible for those years which immediately precede the census year e.g.
1969, 1979, 1989 and 1999.

In order to check the performance of our estimates, we plan to use four comparison measures.
These were originally recommended by the panel on small area estimates of population and income
set up by the Committee on National Statistics in July 1978 and are available in their July 1980

report (p. 75). These are

o Average Relative Bias (ARB) = (51)7' 321, @

(2

C_el?
e Average Squared Relative Bias (ASRB) = (51)~1 321, M

G

e Average Absolute Bias (AAB) = (51)"1 3201 |e; — e
e Average Squared Deviation (ASD) = (51)71 3221 (¢; — €;)?

Here c¢; and e; respectively denote the census and model based estimate of median household
income for the " state (i = 1,...,51). Clearly, lower values of these measures would imply a
better model based estimate.

The basic structure of our models would remain the same as in Section 2.2. We have used
truncated polynomial basis for the P-spline component in both the models. Since Fig 2a doesnot
indicate a high degree of non-linearity, we have restricted ourselves to a linear spline (p = 1). The
selection of knots is always a subjective but tricky issue in these kind of problems. Sometimes

experience on the subject matter may be a guiding force in placing the knots at the “optimum”
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locations where a sharp change in the curve pattern can be expected. Too few or too many knots
generally create problems in terms of worsening the fit. This is because, if too few knots are used,
the complete underlying pattern may not be captured properly, thus resulting in a biased fit. On the
other hand, once there are enough knots to fit important features of the data, further increase in the
number of knots have little effect on the fit and may even degrade the quality of the fit (Ruppert,
2002). Generally, at most 35 to 40 knots are recommended for effectively all sample sizes and
for nearly all smooth regression functions. Following the general convention, we have placed the

knots on a grid of equally spaced sample quantiles of the independent variable (IRS mean income).

4.2 Computational Details

We implemented and monitored the convergence of the Gibbs sampler following the general guide-
lines given in Gelman and Rubin (1992). We ran three independent chains each with a sample
size of 10,000 and with a burn-in sample of another 5,000. We initially sampled the 0;;’s from
t-distributions with 2 df having the same location and scale parameters as the corresponding nor-
mal conditionals given in the Appendix. This is based on the Gelman-Rubin idea of initializing
certain samples of the chain from overdispersed distributions. However, once initialized, the suc-
cessive samples of 0;;’s are generated from regular univariate normal distributions. Convergence
of the Gibbs sampler was monitored by visually checking the dynamic trace plots, acf plots and by
computing the Gelman-Rubin diagnostic. The comparison measures deviated slightly for different

initial values. We chose the least of those as the final measures presented in the tables that follows.

4.3 Analytical Results

Data on CPS median income and IRS mean incomes were available for 50 states and the District
of Columbia for the time span 1995-2004. CPS median income ranged from $ 24,879.68 to $
52,778.94 with a mean of $ 36,868.48 and standard deviation of $5954.94 while IRS mean annual
income ranged from $ 27,910 to $ 72,769.38 with a mean of $ 41,133.45 and standard deviation of
$7196.56.
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We fitted Model I (SPM) with all possible knot choices from 0 to 40 but the best results were
achieved with 5 knots. The estimates (with 5 knots) improved significantly over the CPS estimates
based on all the four comparison measures. Addition of more knots seemed to degrade the fit of the
model. This may happen as pointed out in Ruppert (2002). On the other hand, the SAIPE model
based estimates were slightly superior to the SPM estimates.

Next, we fitted the semiparametric random walk model (SPRWM) to our data. Overall, the
random walk structure lead to some improvement in the performance of the estimates. However,
for the model with 5 knots, the performance of the estimates remained nearly the same. This
may be because 5 knots is sufficient to capture the underlying pattern in the income trajectory and
the random walk component doesnot lead to any further improvement. Last but not the least, the
random walk model estimates, although generally better than those of the basic semiparametric
model, still cannot claim to be superior to the SAIPE estimates for all the comparison measures.
Table 1 reports the posterior mean, median and 95% CI for the parameters of the SPRWM with 5
knots.

It is of interest that the 95% CI for 71, 74 and 75 doesnot contain O indicating the significance of
the first, fourth and fifth knots. This is indicative of the relevance of knots in the penalized spline

fit on the CPS median income observations. The same is true for the coefficients of SPM.

4.4 Knot Realignment

As mentioned in Section 1.1, the SAIPE state models use the census estimates of median income
(for 1999) as one of the predictor which essentially gives them a big edge over us. This may be one
of the reasons why the estimates obtained from the semiparametric models are atmost comparable,
but not superior to the SAIPE estimates. But that doesn’t rule out the fact that the semiparametric
models have room for improvement. In this section, we will look for any possible deficiencies in
the our models and will try to come up with some improvements, if there is any.

As mentioned in Section 4.1, selection and proper positioning of knots plays a pivotal role in

capturing the true underlying pattern in a set of observations. Poorly placed knots does little in this
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regard and can even lead to an erroneous or biased estimate of the underlying trajectory. Ideally,
a sufficient number of knots should be selected and placed uniformly throughout the range of the
independent variable to accurately capture the underlying observational pattern.

Figures 3a. and 3b. shows the exact positions of 5 and 7 knots in the plot of CPS median
income against IRS mean income. In both the cases, the knots are placed on a grid of equally
spaced sample quantiles of IRS mean income. In both the figures, the knots lie on the left of IRS
mean = 50000, the region where the density of observations is high. The knots tend to lie in this
region because they are selected based on quantiles which is a density-dependent measure. Thus,
in both the figures, the coverage area of knots (i.e the part of the observational pattern which is
captured by the knots) is the region to the left of the dotted vertical lines. On the other hand, the
non-linear pattern is tangible only in the low density area of the plot i.e the region lying to the right
of IRS mean = 50000. Evidently, none of the knots lie in this part of the graph. Thus, we can
presume that in both the cases (5 and 7 knots), the underlying non-linear observational pattern is
not being adequately captured.

As anatural solution to this issue, we decided to place half of the knots in the low density region
of the graph while the other half in the high density region. The exact boundary line between the
high density and low density regions is hard to determine. We tested different alternatives and
came up with IRS mean = 47000 as a tentative boundary because it gave the best results. In both
the regions, we placed the knots at equally spaced sample quantiles of the independent variable.
Figure 4 shows the new knot positions for 5 knots.

It is clear from Figure 4 that the new knots are more dispersed throughout the range of IRS mean
than the old ones. The region between the bold and dashed vertical lines denotes the additional
coverage that has been achieved with the knot rearrangement. Based on the number of data points
inside this region, it is clear that a much larger proportion of observations has been captured with
the knot realignment. No knots are in the region beyond the bold vertical lines (i.e beyond IRS
mean 56000) possibly due to the very low density of the observations in that area. Overall, it seems

that, the new knots can capture the underlying non-linear pattern in the dataset which the old knots
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failed to achieve. We also experimented by placing all the knots in the low density region (beyond
IRS mean = 47000) but the results were not satisfactory. This indicates that the knots should be
uniformly placed throughout the range of the independent variable to get an optimal fit.

We have worked with 5 knots because it performed consistently well for both the SPM and
SPRW models. On fitting the semiparametric models with the new knot alignment, we did achieve
some improvement in the results. Table 2 reports the comparison measures for the raw CPS esti-
mates, SAIPE estimates and the semiparametric estimates with the knot realignment while Table
3 depicts the percentage improvement of the semiparametric estimates over the CPS and SAIPE
estimates. Here, SPM(5)* and SPRWM(5)* respectively denote the semiparametric models with
the realigned 5 knots.

It is clear that, with the knot realignment, the comparison measures corresponding to the semi-
parametric estimates have decreased substantially, specially so for the SPM. The new comparison
measures for the semiparametric models are quite lower than those corresponding to the SAIPE
estimates. Thus, we may say that the semiparametric model estimates performs better than the
SAIPE estimates with the realigned knots. This improvement is apparently due to the additional
coverage of the observational pattern that is being achieved with the relocation of the knots. As
a result of this increased coverage, the new knots are possibly capturing the underlying nonlinear
pattern in the observations which the old knots failed to achieve. Although we have done this ex-
ercise with only 5 knots, it would be interesting to experiment with other types of knot alignment
and with different number of knots. Tables 4 and 5 report the posterior mean, median and 95% CI
for the parameters in SPM(5)* and SPRWM(5)* respectively.

It is of interest to note that, with the knot realignment, all the knot coefficients (i.e the ~y’s) are
significant for both SPM and SPRWM. For the old configuration, some of the knot coefficients
were not significant for the models. This corroborates the fact that, with the knot realignment, all
the five knots are significantly contributing to the curve fitting process in terms of capturing the

true underlying non-linear pattern in the observations.
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4.5 Comparison with an Alternate Model

We also compared the semiparametric models (with 5 knots) with the model proposed by GNK

(1996), henceforth referred to as the GNK model. Their univariate model is as follows

Yij = Bo + Bizij + bj 4wy + ey )

where (bj|bj,1) ~ N(O, O'Z), Ui ~ N(O, w?) and €ij ~ N(O, O'ZQJ)
One of the major qualitative difference between the above model and our semiparametric mod-
els is that the former doesnot have a state specific random effect. In fact, it would also be interesting

to compare the above model with the basic semiparametric model (SPM) with 0 knots i.e

Yij = Bo + Bizij + by + uij + €5 @)

where b; ~*? N(0,02) while u;; and e;; have the same distribution as above. Clearly, the only
difference between (7) and (8) is that the former contains a time specific random component while
the latter contains a area specific random component. GNK (1996) showed that the estimates from
the bivariate version of the GNK model (7) performs much better than the census bureau estimates
in estimating the median household income of 4-person families in the United States. Table 6
depicts the comparison measures corresponding to the above models.

It is clear that, although the estimates from the GNK model perform slightly better than the
CPS, those are quite inferior to the semiparametric and SAIPE estimates. This may be because the
state specific random effects in the semiparametric models can account for the within-state corre-
lations in the income values, something which the GNK model fails to do. Since the comparison
measures for SPM(0) are much lower than those for the GNK model, we can also conclude that the
area specific random effect is much more critical than a time specific random component in this

situation.
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S MODEL ASSESSMENT

To examine the goodness-of-fit of the semiparametric models, we used a Bayesian Chi-square
goodness-of-fit statistic (Johnson, 2004). This is essentially an extension of the classical Chi-
square goodness-of-fit test where the statistic is calculated at every iteration of the Gibbs sampler
as a function of the parameter values drawn from the respective posterior distribution. Thus, a pos-
terior distribution of the statistic is obtained which can be used for constructing global goodness-
of-fit diagnostics.

To construct this statistic, we form 10 equally spaced bins ((k — 1)/10,k/10), k = 1, ..., 10,
with fixed bin probabilities, p, = 1/10. The main idea is to consider the bin counts m;(©) to
be random where © denotes a posterior sample of the parameters. At each iteration of the Gibbs
sampler, bin allocation is made based on the conditional distribution of each observation given
the generated parameter values i.e Y;; would be allocated to the k%" bin if F(Y;;|0) € ((k —
1)/10,k/10), k = 1, ..., 10. Johnson’s Bayesian chi-square statistic is then calculated as

Boay X [ma(©) — npi ]
- 3 [me)-m]
VAT
For the purpose of model assessment, two summary measures can be used, both derived from the
posterior distribution of R? ((:)) First one is the proportion of times the generated values of R”
exceeds the 0.95 quantile of a x2 distribution. Values quite close to 0.05 would suggest a good fit.

The second diagnostic is the probability that R”(0) exceeds a x2 deviate i.e
A= Py (RP(©) > X), X ~xj

Since the nominal value of this probability is 0.5, values close to 0.5 would suggest a good fit.
The only assumptions for this statistic to work are that the observations should be conditionally

independent and the parameter vector should be finite dimensional. The second assumption natu-

rally holds in our case. Regarding the first one, since we have multiple observations over time for

every state, there may be within-state dependence between those. Thus, instead of taking all the
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observations (i.e the CPS median income values), we decided to use the last observation for each
state. For the basic semiparametric model (SPM), the above summary measures were respectively
0.049 and 0.5 while for the random walk model (SPRWM), these were 0.047 and 0.51. These
measures suggest that both SPM and SPRWM fits the data quite well. Figure 5a. and 5b. shows
the quantile-quantile plots of R” values obtained from 10000 samples of SPM and SPRWM with
5 knots. Both the plots demonstrate excellent agreement between the distribution of R? and that
of a x*(9) random variable.

Johnson points out that the Bayesian chi-square test statistic is also an useful tool for code
verification. If the posterior distribution of R” deviates significantly from its null distribution, it
may imply that the model is incorrectly specified or there are coding errors. Since the summary
measures are quite close to the corresponding null values, we think that our models provide a

satisfactory fit to the data set and also that there are no coding errors.

6 DISCUSSION

The proper estimation of median household income for different small areas is one of the
principal goals of the U.S Census Bureau. These estimates are frequently used by the Federal
Government for the administration and maintenance of different federal programs and also for the
allotment of federal grants to local jurisdictions. Although these estimates are available annually
for every state, the U.S Census Bureau generally uses a non-longitudinal approach in their esti-
mation procedure based on the Fay-Herriot model (Fay and Herriot, 1979). In this study, we have
proposed a semiparametric class of models which exploit the longitudinal trend in the state-specific
income observations. In doing so, we have modeled the CPS median income observations as an
“income trajectory” using penalized splines (Eilers and Marx, 1996). We have also extended the
basic semiparametric model by adding a time series random walk component which can explain
any specific trend in the income levels over time. We have used as our covariate, the mean adjusted
gross income (AGI) obtained from IRS tax returns for all the states. Analysis has been carried

out in a hierarchical Bayesian framework. Our target of inference has been the state wide median
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household incomes for the year 1999. We have evaluated our estimates by comparing those with
the corresponding census estimates of 1999 using some commonly used comparison measures.

Our analysis has shown that information of past median income levels of different states do
provide strength towards the estimation of state specific median incomes for the current period. In
fact, if there is an underlying non-linear pattern in the median income levels, it may be worthwhile
to capture that pattern as accurately as possible and use that in the inferential procedure. In terms
of modeling the underlying observational pattern, the positioning of knots proved to be both im-
portant and interesting. The quality (in terms of their “closeness” to the census estimates) of the
estimates tended to improve as the knots were positioned more uniformly throughout the range of
the independent variable. It became apparent that the contribution of the knots towards deciphering
the underlying observational pattern improved substantially when those were properly placed with
an optimal coverage area. This in turn improved the approximation of the curve vis-a-vis the true
unknown observational pattern. This proved interesting because, still now, there is no absolute rule
which controls the positioning of knots. Our final estimates proved to be superior, not only to the
raw CPS estimates, but also to the current U.S Census Bureau (SAIPE) estimates. Although the
basic semiparametric model performed much better that the semiparametric random walk model
with 5 knots, more experiments need to be done with different knot positions and number before
anything conclusive can be said about their relative performance as a whole. But, it seems that, if
adequate knots are used and if those are placed uniformly throughout the range of the independent
variable, then a random walk component may not improve the fit any further provided there is no
strong trend in the income levels. The main advantage of our modeling procedure is that it can be
used for any possible patterns in the response (income, poverty etc) observations of small areas.
In a subsequent work related to the estimation of median incomes of 4-person families, we have
shown that the multivariate version of the basic semiparametric model perform quite well too and
provide estimates which are consistently superior to the U.S Census Bureau estimates.

The above models can be extended in various ways based on the nature of the observational

pattern and the quality (or richness) of the dataset. Some obvious extensions are given as fol-
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lows : (1) In the models considered above, the spline structure f(z;;) represents the population
mean income trajectory for all the states combined. The deviation of the i** state from the mean
is modeled through the random intercept b;. This implies that the state-specific trajectories are
parallel. A more flexible extension would be to model the state-specific deviations as unspecified

non-parametric functions as follows

Yij = flzy) + 9i(xij) + uig + e

K*
where  g;(x;;) = bix + biowi; + Z Wit (Tij — Ki)+ ©)
k=1

Here g;(x) is an unspecified nonparametric function representing the deviation of the 7" state

from the population mean trajectory f(z). g¢;(x) is also modeled using P-spline with a linear
part, b;; + bipx and a non-linear one, Y& | wix(z — Ky ), thus allowing for more flexibility. Both
these components are random with (b;1, b;2)" ~ N(0,X) (X being unstructured or diagonal) and
wix ~ N(0,02). This extension is particularly relevant in situations where the state-specific in-
come trajectories are quite distinct from the population mean curve and thus need to be modeled
explicitly. We plan to pursue this extension if we can procure a richer dataset with longer state
specific income trajectories. (2) Sometimes the function to be estimated (here the median in-
come pattern) may have varying degrees of smoothness in different regions. In that case, a single
smoothing parameter may not be proper and a spatially adaptive smoothing procedure can be used
(Ruppert and Carroll, 1999). (3) We used the truncated polynomial basis function to model the
income trajectory but other types of bases like B-splines, radial basis functions etc can also be
used. (4) Although we used a parametric normal distributional assumption for the random state
and time specific effects, a broader class of distributions like the Dirichlet process or Polya trees
may be tested.

Last but not the least, we think that semiparametric modeling approach holds a lot of promise
for small domain problems specially where observations for each domain are collected over time.

The associated class of semiparametric models can well be an attractive alternative to the models
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generally employed by the U.S Census Bureau.

APPENDIX A : PROOFS

A.1 : Proof of Posterior Propriety

The proof of posterior propriety for the basic semiparametric model (Model I) is outlined be-

low. The necessary changes to the proof for the random walk model are mentioned at the end.

Theorem 1. Let ¥2,, = max(¢?,...,¢?) = 12, say, for some k € [1,...,t]. Then, posterior

propriety holds if the following conditions are satisfied
I. (m—p—>5)/24+ ¢, >0andd; >0
2. m/2+cj—2>Oanddj >0,5 = 1,,t,j7’ék

Proof. The basic parameter spaceis Q2 = (0, 3,7,b, 03,02, {47, ...,¢7}) where = (6, ..., 0, )’
and b = (b, ...,b,,) . Let

I = / /pQ|YXZ 40

= / /ﬁ L(Y6;)L(0;8,~, b, v*, X, Z,')L(b,»|a§)} L(v]ai)ﬂ(ﬁ)ﬂ(ag)w(ai) 11 w(zp?)dﬂ

We have to show that I < M where M is any finite positive constant.

Integrating first w.r.t 3, we have

Ig = /W(ﬂ)HL(9¢|5>’)’, bi, ¥, X, Z;)dp3
= /exp[ — %Z(OZ — Xzﬁ — ZZ’Y — bil)’\IJ_l(Oi — XZB — ZZ’Y — bll)]dﬁ
1 -1
_ \p—1x.1—1/2 . '\ -1 AV ) 1w 1 .
- \ZX\IJ X;| exp[ 2¥W W, + - (ZW )(quf X> (ZX\IJ W)}
(11
where W; = 0; — Z;vy — b;1 and U~ = diag(; %, ¥5 2, ..., 7 2).
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Now, W/U—I'W,; = WU~ 1/20-1/2W,; = S/S; where S; = U~'/2W,. Similarly, W/¥U~'X; =
ST, X\ U~'W,; = T’S; and X)¥~'X; = T/T; where T; = U~/2X,. On replacing these, the

expression in the exponent of (11) becomes

1

| Tss - (Tsm)(zmm) ()
- _; 'S - S'T(T'T) 'T'S]

— _;sf [1 — T(T’T)—lT’}s =@, sa

where S = (S, ...,S,,) and T = (T, ..., T,,)". Since (I — T(T'T) 'T’) is idempotent, S’ [I -
T(T’T)*lT’] S is non-negative, implying () < 0 and thus exp()) < 1.

Next, we consider integration w.r.t 1)° i.e

Iy = // | XX, [ ﬁ (2) "2 exp(—d; /) dup...dy?
i j=1

[ o [V XX 1742 T (22 exp(—d, ).
: ij j=1

(12)

Assuming ¥4, = max(yy,...,1¢,), we have, Vj = AT 2> Y2 = Xij@ZJJ*Qng >
Ul/)m?sz, = 3 Xy QX;J > 2 >2i; Xi;X}; and thus

\ZXW X0 TS (U)X X [T (13)

i,J

Combining (12) and (13), we have

Ly < D XyuXj; |=/2 /-~-/(¢3m )P/ H “m2mtexp(—d; /3 )iy .. dapy
i
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Assuming v2, = = 17 for some k € [1, ..., t], we have,

IN

Ty

1 D(m=p=5)/24+c) (m/2+c 2)

_ 1/2

| ZXUX{L] | / d(m—p—5)/2+ck 4 H . W say
k Jj=1,#k j
where W is finite if (m —p —5)/2 + ¢, > 0, d, > 0, m/2 +¢; —2 > 0and d; > O for

j=1,..t75#k.
Combining (10) and (14), we have

1< [ [ TH{EY )LD} Lrloyr(otyr(oisy (15)

where Q" = (2 — B — 1p). Since all the components of the integrand in (15) have proper distribu-
tions, the above integral would be finite thus proving posterior propriety.

For the random walk model, the integrand in (10) will have an additional likelihood term
ITj—1 L(vj|v;—1,07) and a prior term 7(o7). The derivation would then proceed exactly as above
and the integrand in (15) will also contain these additional terms. But since both of these are proper
distributions (normal and inverse gamma respectively), / will still be finite under the conditions

stated in the theorem.

APPENDIX B : FULL CONDITIONAL DISTRIBUTIONS

The full conditional distributions of the parameters for the basic semiparametric model are as

follows :
VDR RO U e
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m t X1X; —1 m t Xz m t XzX;
{6‘7707b7¢27X7Z:| ~ N[(ZZ 32 j) (ZZ ;(HZJ_Z{LJ’Y_I)Z))7<ZZ ;2 2
i=1j=1 TZ}j i=1j=1 7/)]' i=1j=1 J
Zi:Z. 1 \! 7. Z,;Z;.
21804702, X2 ~ N|(SZE 1) (S 2 -xs- ). ( i
{ | ! } i %2 o3 i %2‘( ! ’ ) ; wJZ‘

(@)] ~ @
-~ m 1 &
- i=1

2y—1 [m 1¢~0
|:(0'b) |b:| ~ G_5+C?§;bz +d:|
Here G(a, b) denotes a gamma distribution with shape = a and rate = b.

The full conditional distribution of the parameters for the semiparametric random walk model
will follow similarly as above. In this case, v and o2 will have normal and inverse gamma full

conditionals respectively while the full conditionals of the other parameters will depend on v.
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Table 1: Parameter Estimates of SPRWM with 5 Knots

Parameter Mean

Median 95% CI1

Bo 4677.71 4660.08 (4633.31,4758.7)

B 0.8156  0.816 (0.814, 0.817)

M -0.154  -0.154  (-0.158, -0.149)

Yo 0.02 0.024 (-0.016, 0.040)

73 -0.008  -0.016 (-0.056, 0.066)

Va4 -0.093  -0.119  (-0.127,-0.037)

Y5 -0.165  -0.173  (-0.187,-0.139)

Table 2: Comparison Measures for SPM(5)" and

SPRWM(5)* Estimates with Knot Realignment

Estimate ARB ASRB AAB ASD

CPS 0.0415 0.0027 1,753.33 5,300,023
SAIPE 0.0326 0.0015 1,423.75 3,134,906
SPM(5)* 0.028 0.0012 1173.71 2,334,379
SPRWM(5)* 0.0295 0.0013 1256.08 2,747,010

Table 3: Percentage Improvements of SPM(5)*

Estimates over SAIPE and CPS Estimates

and SPRWM(5)*

Estimate Model ARB ASRB AAB ASD

SAIPE SPM(5)* 14.11% 20.00% 17.56% 25.54%
SPRWM@)* 9.51% 13.33% 11.78% 12.37%

COPS SPM(5)* 32.53% 55.55% 33.06% 55.96%
SPRWM(5)* 28.92% 51.85% 28.36% 48.17%
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Table 4: Parameter Estimates of SPM(5)*

Parameter =~ Mean  Median 95% CI

Bo 4767.48 4769.04 (4743.33,4791.67)
B 0.811 0.810 (0.809, 0.812)
901 -0.189  -0.191 (-0.198, -0.180)
Yo 0.0389  0.0395 (0.0189, 0.059)
V3 0.104 0.102 (0.099, 0.126)
V4 -0.240  -0.253 (-0.305, -0.179)
Vs -0.127  -0.155 (-0.181, -0.081)

Table 5: Parameter Estimates of SPRWM(5)*

Parameter =~ Mean  Median 95% CI

Bo 4826.28 4824.39 (4806.77, 4860.56)
B 0.806 0.809 (0.801, 0.810)
901 -0.159  -0.156 (-0.183,-0.151)
Yo 0.014 0.012 (0.004, 0.039)
V3 0.08 0.08 (0.027, 0.123)
Y4 -0.237  -0.244 (-0.369, -0.125)
V5 -0.225  -0.183 (-0.538, -0.085)
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Table 6: Comparison Measures for Time Series and other

Model Estimates

Estimate ARB ASRB AAB ASD

CPS 0.0415 0.0027 1,753.33 5,300,023
SAIPE 0.0326 0.0015 1,423.75 3,134,906
GNK 0.0397 0.0025 1709.58 5,229,869
SPM(0) 0.0337 0.0017 1408.7 3,137,978
SPM(5)* 0.028 0.0012 1173.71 2,334,379
SPRWM(5)* 0.0295 0.0013 1256.08 2,747,010
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Figure 1: Longitudinal CPS median income profiles for 6 states plotted against IRS mean and

median incomes. (1st row : IRS Mean Income; 2nd row : IRS Median Income).
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Figure 2: Plots of CPS median income against IRS mean and median incomes for all the U.S states
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Figure 3: Exact positions of 5 and 7 knots in the plot of CPS median income against IRS mean
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income. The knots are depicted as the bold faced triangles at the bottom.
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Figure 4: Positions of 5 knots after realignment. The knots are the bold faced triangles at the
bottom. The region between the dashed and bold lines is the additional coverage area gained from

the realignment.
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Figure 5: Quantile-quantile plot of R values for 10000 draws from the posterior distribution of the
basic semiparametric and semiparametric random walk models. The X-axis depicts the expected

order statistics from a 2 distribution with 9 degrees of freedom.
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