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We consider a likelihood ratio test of independence for large two-way contingency tables having both
structural (non-random) and sampling (random) zeros in many cells. The solution of this problem is not
available using standard likelihood ratio tests. One way to bypass this problem is to remove the structural
zeroes from the table and implement a test on the remaining cells which incorporate the randomness in
the sampling zeros; the resulting test is a test of quasi-independence of the two categorical variables. This
test is based only on the positive counts in the contingency table and is valid when there is at least one
sampling (random) zero. The proposed (likelihood ratio) test is an alternative to the commonly used ad hoc
procedures of converting the zero cells to positive ones by adding a small constant. One practical advantage
of our procedure is that there is no need to know if a zero cell is structural zero or a sampling zero. We model
the positive counts using a truncated multinomial distribution. In fact, we have two truncated multinomial
distributions; one for the null hypothesis of independence and the other for the unrestricted parameter
space. We use Monte Carlo methods to obtain the maximum likelihood estimators of the parameters and
also the p-value of our proposed test. To obtain the sampling distribution of the likelihood ratio test statistic,
we use bootstrap methods. We discuss many examples, and also empirically compare the power function
of the likelihood ratio test relative to those of some well-known test statistics.

Keywords: chi-squared test; maximum likelihood estimators; Monte Carlo methods; quasi-independence;
truncated multinomial distribution; zero counts

1. Introduction

Large two-way contingency tables almost always have cells with small and/or zero counts. Such
tables frequently occur in survey problems where the categorical variables have many levels.
For these tables, the use of the standard chi-squared test and the likelihood ratio test becomes
problematic. Here, we assume that at least one of these zero counts is a random zero, and the test
of independence becomes a test of quasi-independence of the two categorical variables. In this
article, we show how to use the likelihood ratio test for sparse categorical tables in which many
cells have observed zero counts.

Bishop et al. [1] considered ‘incomplete’ tables with zero cell counts known in advance; these
are known as structural zeros. There are tables in which zero cells may vanish for larger sample
sizes; such cells are called sampling zeros and they are random (i.e. they are not fixed in advance as
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2 B. Nandram et al.

structural zeros). Structural zeros can be dealt with simply by dropping them from the standard test
statistics although it is necessary to identify them. Therefore, the resulting test of independence
becomes a test of quasi-independence (i.e. the test is run on the remaining cells).

However, sampling zeros must be taken into consideration, and they are more difficult to study
because the standard likelihood ratio test does not exist. One way to avoid the difficulties associated
with sampling zeros is to implement a test of quasi-independence of the two categorical variables
while incorporating the randomness in the sampling zeros. This test is based only on the positive
counts in the contingency table, thereby leading naturally to our approach which uses the truncated
multinomial distribution for modelling the positive cell counts. Bishop et al. [1, Section 5.2.1]
discuss the notion of quasi-independence for two-way contingency tables specifically for the case
when there are structural zeros. In this article, we consider a modification of this definition since
we do not ignore the sampling zeros.

In this article, we formulate a likelihood ratio test of quasi-independence for sparse categorical
tables in which many cells have observed zero counts. Our test is sensible from a practical
viewpoint as we do not need to know whether a cell is a structural or a sampling zero. However,
our procedure requires at least one zero cell to be a sampling zero. This assumption is required
because we need a nonzero probability on all zero cells (structural and sampling) combined into
a single cell so that all positive cells have a total probability smaller than 1. The proposed test
is based on the positive counts in the contingency table which are modelled using the truncated
multinomial distribution. We do not consider the problem in which there is uncertainty about
whether a specific cell is a structural zero or a sampling zero. For a mathematical treatment
of this problem within the Bayesian paradigm, see Consonni and Pistone.[2] Because we are
looking for the exact distribution of the likelihood ratio test statistic, our method allows us to deal
simultaneously with the problem of sparse tables (expected cell counts smaller than 5).

There have been many proposals to correct for the sparseness of large tables; Ishii-Kuntz [3]
provides a review of many strategies for dealing with zero cells in contingency tables. In practice,
the usual choice is to drop these zero cells or add a small constant to all the cells. This latter choice
is sensitive to the constant used. For example, adding 0.5 to every cell of the contingency table,
as suggested by Goodman,[4] tends to make the sparse cells equally probable, thereby making
the chi-squared statistic too conservative especially when the table density is less than 5, and this
effect is very severe when there are many cells. See Agresti [5, p. 397] for additional discussion
about adding 0.5 to the zero cells. There are other suggestions such as (a) add a small quantity
such as 0.2 only to zero cells,[6] (b) add the reciprocal of the number of response categories [7]
to the zero cells, (c) define zero divided by zero arbitrarily as zero [8] and (d) increase the sample
size sufficiently to remove all zero cells.[9] Finally, Clogg and Eliason [10] suggested replacing
sampling zeros by 0.000000001 or even a smaller number and then check the results against those
obtained without such an adjustment or, as suggested by Agresti,[5, p. 397] perform a sensitivity
analysis. While this is a minor over smoothing, it is still an ad hoc procedure. Recently, Beh and
Farver [11] suggested adding 0.05 to the zero cells. In fact, adding 0.05, 0.5 or so to every cell of
a table with many zero cells results in severe over smoothing.

An alternative to maximum likelihood estimation and chi-squared goodness-of-fit test is to
use Fisher’s exact test of independence.[5, Section 3.5] This test conditions on both margins
(not naturally fixed though) of the two-way table leading to a hypergeometric distribution under
independence for the free cell in a 2 × 2 table. The test is exact because the probabilities of
the hypergeometric distribution can be calculated exactly under the hypothesis of independence.
Larger two-way tables need Monte Carlo methods or asymptotic theory [1, Section 10.6] or special
algorithms.[12] However, because the hypergeometric distribution is discrete it is not possible
to obtain a specific significance level (e.g. .05); a randomization procedure is necessary. In fact,
both Fisher’s exact test and the chi-squared test are conservative because their actual significance
level is below the nominal level.[13,14] Hashemi et al. [15] has a Bayesian approach using Bayes
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factors which is conditional on only one margin of a 2 × 2 table. For a general two-way table and
for non-ignorable missing data, Nandram [16] has a Bayesian method to test for independence
when both margins are random; see also Nandram and Choi.[17] Fiser’s exact test was critcized
by Berkson [18] on the grounds that the marginal totals are informative. This leads to smaller
variablility and hence smaller p-values. In addition, Fisher’s exact test cannot be computed for
large (more than 24 cells or so) because the workspace required for the network algorithm [19]
on SAS 9.2 is currently prohibitive. Fisher’s exact test can be computed with structural zeros but
again only for small tables.[20] At the moment it is not possible to compute the p-value of Fisher’s
exact test for large tables with structural zeros and uncertainty about whether a cell is a structural
or sampling zero partly because of the large workspace needed.

There is a growing body of research on general two-way tables, both categorical variables being
ordinal. The key interest is to test for positive association of the two categorical variables under
stochastic ordering. The intention is to generalize Fisher’s exact test. This is a specialized type
of literature of importance in its own right. Bartolucci et al. [21] consider both conditional and
unconditional tests, Bartolucci and Scaccia [22] developed an exact conditional approach for cer-
tain forms of positive association using the multivariate generalized hypergeometric distribution,
an extension of Fisher’s exact test, and Bartolucci et al. [23] has a Bayesian approach in which
the Bayes factor is used to test for independence under stochastic ordering. In this paper, we are
considering a test of quasi-independence for two-way categorical tables in which the categories
are nominal, not ordinal, and there are both structural and sampling zeros and uncertainty about
which cells are structural or sampling zeros. This is itself an ubiquitous problem. In Appendix
A we show how to extend our method to two-way tables in which both categorical variables are
ordinal.

Log-linear models are commonly used to analyse multi-dimensional tables. Brown and
Fuchs [24] have a good discussion of log-linear models for sparse contingency tables with zero
counts; see also Baker et al. [25] for other views on structural and sampling zeros. Recently there
has been increased activities in the use of log-linear models for multi-dimensional tables with
sampling zeros. It has been shown that for certain patterns of sampling zeros maximum likeli-
hood estimators (MLEs) may not exist for the parameters of the log-linear model. For an extensive
theoretical discussion, see Fienberg and Rinaldo.[26,27]

There are difficulties in fitting log-linear models to tables with sampling zeros. Because the
problem is caused by small samples, asymptotic theory, the backbone of log-linear models, does
not help. However, log-linear models can be fitted to tables with structural zeros; see Christensen
[28, Chapter 8] for a detailed discussion of this topic and note particularly the very informative
discussion about how to deal with sampling zeros. Clogg and Eliason [10] has a very interesting
discussion about some common problems in log-linear analysis and they also outlined strategies
for dealing with them. For example, Clogg and Eliason [10] pointed out that there are difficulties
in finding degrees of freedom when there are zero cells. They describe how to do so by calculat-
ing the difference between the effective dimension of the design matrix and the actual number of
independent parameters estimated. Because we restrict attention to two-way categorical tables,
which are highly applicable, it is not necessary to use log-linear models although we are consid-
ering large and sparse two-way tables. In fact, we provide an exact test which avoids asymptotic
theory. It is indeed an open problem of how to analyse categorical tables with both structural
and sampling zeros and even worst when it is not known with certainty which cells are structural
zeros and which are sampling zeros. This is the problem we study for a r × c categorical table.
In Appendix B we show how to extend our method to multi-way categorical tables.

The plan of the rest of the paper is as follows. Section 2 has a preliminary discussion and
reviews many different test statistics, some of which are used routinely. In Section 3 we describe
the likelihood ratio test for quasi-independence of the two categorical variables. In Section 4
we show how to compute the MLEs and obtain the distributions of the likelihood ratio statistic
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4 B. Nandram et al.

using a Monte Carlo method. In Section 5 we present several examples with exact distributions and
p-values, and we compare our likelihood ratio test with many other well-known tests.We also study
the empirical power function of our likelihood ratio test statistic. Section 6 has concluding remarks.

2. Preliminary discussion

We consider the situation in which there are n individuals who are to be placed in k cells through
an independent and identical sampling scheme. Clearly, the numbers of individuals falling in the
k cells have a multinomial distribution. It is a standard practice to judge the sparseness of the
table by the ratio η = n/k with smaller values indicating more sparse tables; η is called the table
density. Sparseness occurs in two-way tables when at least one categorical variable has several
levels or the sample size, n, is small. In this article, we will consider sparse tables in which all
marginal counts are positive.

Let nij, i = 1, . . . , r, j = 1, . . . , c, denote the cell counts in a two-way contingency table.
The marginal counts are given by ai = ∑c

j=1 nij, i = 1, . . . , r, and bj = ∑r
i=1 nij, j = 1, . . . , c.

Note that, for a r × c contingency table, k = rc. Let πij denote the cell probabilities, where∑r
i=1

∑c
j=1 πij = 1, pi = ∑c

j=1 πij and qj = ∑r
i=1 πij. The independence hypothesis states that

πij = piqj, i = 1, . . . , r, j = 1, . . . , c, where
∑r

i=1 pi = 1 and
∑c

j=1 qj = 1. Let λ̂ij = aibj/n
denote the MLEs of the means of nij under the hypothesis of independence of the two categorical
variables. Then, the Pearson chi-squared statistic is given by

X2 =
∑

ij

(nij − λ̂ij)
2

λ̂ij

and the likelihood ratio statistic G2 is given by

G2 = 2
∑

ij

nij log

(
nij

λ̂ij

)
,

where, for both statistics, λ̂ij are assumed positive. It is well known that Pearson X2 and the like-
lihood ratio statistic G2 have equivalent asymptotic chi-squared distributions with (r − 1)(c − 1)

degrees of freedom; the asymptotic approach is as n goes to infinity with k = rc fixed. However,
these results do not hold for sparse contingency tables; see Agresti [5, Section 7.7] and Bishop
et al.[1, Chapter 5]

The accuracy of the chi-squared approximation depends on both n and k. The standard recom-
mendation for reasonable performances of X2 or G2 is that the expected cell counts should be
at least 5. When there are sampling zeros, strictly speaking, the likelihood ratio test cannot be
carried out. For the Pearson chi-squared statistic, under independence, the expected cell counts
are strictly positive, thereby increasing the value of the Pearson chi-squared statistic and leading
to smaller p-values.

Cressie and Read [29] provided normal approximations to the null distributions of X2 and G2,
and Read [30] studied the chi-squared approximations to X2 and G2. Koehler [31] and Koehler
and Larntz [32] examined the accuracy of these approximations. The distribution of G2 is usually
poorly approximated by a chi-squared distribution when η = n/k is less than 5; X2 can be better
approximated by a chi-squared distribution for smaller sample sizes compared to G2. However,
the chi-squared approximation tends to perform poorly for sparse tables containing both small
and moderately large expected cell counts.

Cressie and Read [29] introduced a family of statistics called the power divergence statistics of
which X2 and G2 are special cases; see also Read and Cressie [33] for an exhaustive discussion
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Journal of Statistical Computation and Simulation 5

on power divergence statistics. The power divergence statistic is given by

P2 = 2

ϕ(ϕ + 1)

∑
ij

nij

{(
nij

λ̂ij

)ϕ

− 1

}
, −∞ < ϕ < ∞,

which is always positive and is defined as limits of P2 at −1 and 0. Both the chi-squared test
statistic, X2, and the likelihood ratio statistic, G2, are special cases of P2 (i.e. ϕ = 1 gives the chi-
squared test statistic and taking the limit as ϕ goes to zero gives the likelihood ratio test statistic).
This is a very rich class of statistics and it contains many other statistics. One prominent statistic
is the Freeman–Tukey statistic (ϕ = − 1

2 ) which is

F2 = 4
∑

ij

(√
nij −

√
λ̂ij

)2

and a more popular one is the Cressie–Read statistic (ϕ = 2/3) which is

C2 = 9

5

∑
ij

nij

⎧⎨
⎩

(
nij

λ̂ij

)2/3

− 1

⎫⎬
⎭ .

The idea is that by adjusting the simple chi-squared statistic we still get the same asymptotic
chi-squared distribution for every member of the power divergence family of statistics. Cressie
and Read [29] found that C2 is less susceptible to the effects of sparseness than X2 and G2; see
also Read and Cressie [33, Section 4.5] for recommendations. Even though there are conflicting
recommendations regarding the choice of ϕ that results in the optimal statistic, in almost all cases
they recommend a value of ϕ in (−1, 2] and they state that when the sample size is larger than
10, C2 is an excellent choice. In our investigations, we will study X2, G2, F2 and C2 which are
all members of the power divergence class of statistics.

Garcia-Perez and Nunez-Anton [34] have recently studied seven members of the power diver-
gence family including X2 and G2 using a simulation study. They found that the rate of convergence
of the power divergence statistic depends on the parameter indexing the family. Among the seven
members studied, they found that X2 is the best up to a table density as low as 2; a moment cor-
rection increases the accuracy of X2 for table density lower than 2. They showed that G2 performs
poorly and hence did not recommend it.

Another adjustment to the Pearson X2 is given by Zelterman.[35] The adjustment is the D2

statistic,

D2 =
∑

ij

{(nij − λ̂ij)
2 − nij}

λ̂ij

.

It is interesting that D2 is not a member of the class of divergence statistics. Zelterman [35]
also showed that when properly normalized, under the null hypothesis of independence, D2 has
an asymptotic standard normal distribution as both n and k approach infinity. Therefore, the
asymptotic p-value for the test of independence is easy to obtain. It is true that for such tables, X2

and D2 are not equivalent and X2 will reject the alternative hypothesis more often than D2. Note
that the contribution of nij = 0 to D2 is the same as that of X2 (i.e. λ̂ij is added to each statistic).

Clearly, it will be better to obtain the exact distribution of the likelihood ratio statistic for the
test of independence for sparse contingency tables to avoid the uncertainty associated with X2,
G2, D2, F2 and C2 and allied adjusted statistics. Our idea is to use the truncated multinomial
distribution under no restriction (the whole space) and under the null hypothesis of independence.
Letting k0 denote the number of cells with structural and sampling zeros, the sparseness of the
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6 B. Nandram et al.

Table 1. Summary of the characteristics of the six examples (E1–E6).

Example Dimension k n k0 M η η0

E1 11 × 24 264 279 186 22 1.06 3.58
E2 16 × 5 80 219 24 16 2.74 3.91
E3 6 × 28 168 539 54 21 3.21 4.73
E4 6 × 17 102 270 31 13 2.65 3.80
E5 4 × 4 16 21 4 3 1.31 1.75
E6 28 × 26 728 129 627 5 0.19 1.28

Note: n is the sample size; k is the number of cells; k0 is the number of cells with structural and sampling zeros; M is the largest cell; the
table density, η0 = n/(k − k0), is larger than η = n/k.

table is given by η0 = n/(k − k0), a considerably smaller sparseness than η = n/k because k0

can be substantial for sparse tables. For example, consider Table 1 on the six examples (E1–E6)
that we discuss later. In E1, n = 279, k = 264 and k0 = 186, and in E6, n = 129, k = 728 and
k0 = 627; in E1 and E6, k0 is relatively large with respect to k. Here, the idea is that the sparseness
of the table is reduced considerably and the test is essentially done only on the positive cells with
all the structural and sampling zeros treated as a single nonnegative cell.

In Section 4 we present several examples with exact distributions, p-values, and a comparison
of our proposed likelihood ratio test with X2, G2, D2, F2 and C2. We also compare the empirical
power function of our likelihood ratio test statistic with that of X2, G2, D2, F2 and C2.

3. Likelihood ratio test

We denote the proposed likelihood ratio test statistic by T 2. In this section, we discuss how
to obtain T 2, its exact distribution under the null hypothesis, and its p-value for a sparse r × c
contingency table with sampling zeros. The likelihoods are obtained by assuming truncated multi-
nomial distribution to accommodate the positivity restriction on the cell counts. Our procedure
uses Monte Carlo methods to obtain the sampling distribution of the test statistic, and therefore,
the p-value.

The null hypothesis of independence is given by πij = piqj, i = 1, . . . , r, j = 1, . . . , c, and
the alternative hypothesis is that there is at least one cell with πij �= piqj. There is no restriction
on the whole space which is the union of these two hypotheses. We assume that the individuals
respond independently in the k = rc cells of the two-way table. Therefore, we always have the
multinomial distribution albeit with the truncation restriction under the hypotheses. To account
for the randomness of the sampling zeros, we assume that the nonzero cell counts are positive
random variables. Next, we formulate the null hypothesis of quasi-independence.

Let N denote the set of positive cells of the two-way table. Also let Ri = {(i, j) : nij > 0, j =
1, . . . , c}, i = 1, . . . , r and Cj = {(i, j) : nij > 0, i = 1, . . . , r}, j = 1, . . . , c, where Ri is the set of
positive counts in ith row, and Cj is the set of positive counts in jth column. Throughout inference
is conditional on N . It is worth noting that, unlike Fisher’s exact test, our likelihood ratio test
does not condition on the two margins of the two-way categorical table; it is only conditional on
the set of positive cells.

Then the null hypothesis of quasi-independence is given by the restriction,

πij =
{

piqj, (i, j) ∈ N ,

0 otherwise.
(1)

In Equation (1), pi = ∑
j∈Ri

πij, i = 1, . . . , r, and qj = ∑
i∈Cj

πij, j = 1, . . . , c. Finally, it is
worth noting that

∑r
i=1 pi = ∑c

j=1 qj = 1 and under the null hypothesis of quasi-independence,
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we have

0 <
∑

(i,j)∈N
πij =

∑
(i,j)∈N

piqj < 1,
r∑

i=1

c∑
j=1

πij =
r∑

i=1

c∑
j=1

piqj = 1.

We now construct the truncated multinomial distributions for the positive cells under the unre-
stricted parameter space and the restricted parameter space (i.e. the null hypothesis). Under the
unrestricted parameter space, we have

p(n˜ | π˜ ) = n!
∏

(ij)∈N

1

nij!

{
πij∑

(i,j)∈N πij

}nij

, nij > 0,
∑

(i,j)∈N
nij = n, (2)

and under the restricted parameter space, the corresponding distribution is given by

p(n˜ | p
˜
, q
˜
) = n!

∏
(ij)∈N

1

nij!

{
piqj∑

(i,j)∈N piqj

}nij

, nij > 0,
∑

(i,j)∈N
nij = n. (3)

Equations (2) and (3) reflect/elaborate our assumption of representing all the 0 cells with a single
positive cell. Then, the structural and sampling zeros represent a small number of individuals, say
n0 ≥ 0. Thus, the effective sample size is N = n + n0, which is a latent variable. It is easy to see
this because we can augment the probability mass function of n˜ to include N or n0 as follows.
From Equation (2) we have

p(n˜ , N | π˜ ) = (N − 1)!n
⎧⎨
⎩

∏
(ij)∈N

π
nij

ij

nij!

⎫⎬
⎭ (1 − ∑

(ij)∈N πij)
N−n

(N − n)! , N ≥ n, (4)

and from Equation (3) we have

p(n˜ , N | p
˜
, q
˜
) = (N − 1)!n

⎧⎨
⎩

∏
(ij)∈N

(piqj)
nij

nij!

⎫⎬
⎭ {1 − ∑

(ij)∈N (piqj)}N−n

(N − n)! , N ≥ n. (5)

Thus, Equations (4) and (5) are presumably convenient to perform an expectation-maximization
(EM) algorithm to obtain the MLEs of the πij. This is a standard data augmentation scheme when
the EM algorithm is used.

From Equation (4) or Equation (5), it is easy to deduce that the marginal probability mass
function of N is negative binomial. Specifically, from Equation (2), we have, p(n˜ , N | π˜ ) =
p(n˜ | N , π˜ )p(N | π˜ ), where N | π˜ ∼ NB(n,

∑
(ij)∈N πij) with NB denoting the negative

binomial probability mass function, and from Equation (3), we have, p(n˜ , N | p
˜
, q
˜
) =

p(n˜ | N , p
˜
, q
˜
)p(N | p

˜
, q
˜
), where N | p

˜
, q
˜

∼ NB(n,
∑

(ij)∈N pipj). Note that, under this formulation,
both

∑
(ij)∈N πij and

∑
(ij)∈N piqj are assumed to be strictly smaller than unity. That is, all zero

cells are assumed to have a positive total probability, an assumption that is typically made (e.g. [2]).
Clearly, this assumption is sensible if at least one zero cell is a sampling zero; we believe that
adding a small positive constant to a structural zero cell is not sensible.

However, note that Equations (4) and (5) are never used in our development. So one does not
need to know what n0 or N is. That is, throughout we work with only Equations (2) and (3).

Since the logarithm of the likelihood ratio test statistic is T 2 = −2[ln{p(n˜ | p̂
˜
, q̂
˜
)} −

ln{p(n˜ | π̂˜ )}], where p̂
˜

and q̂
˜

are the MLEs under Equation (3), and π̂˜ is the maximum likelihood
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8 B. Nandram et al.

estimator under Equation (2), we have

T 2 = 2
∑

(ij)∈N
nij

[
ln

{
π̂ij∑

(i,j)∈N π̂ij

}
− ln

{
p̂iq̂j∑

(i,j)∈N p̂iq̂j

}]
. (6)

Thus, T 2 is obtained once p̂
˜
, q̂

˜
, and π̂˜ are computed. It is worth noting that T 2 has (r − 1)

(c − 1) − (k0 − 1) degrees of freedom (i.e. k0 − 1 less than the number without the assumption
of sampling zeros), where as defined earlier, k0 is the number of cells with sampling zeros. We do
not rely on asymptotic theory and we provide the exact distribution of T 2. Thus, our likelihood
ratio test is an exact test. The challenge to find the distribution of the likelihood ratio test statistic
is to obtain the MLEs of the parameters under these scenarios.

4. Computations

The key issue that remains is how to compute the MLEs. Once this is done, it is easy to use a
Monte Carlo method to obtain the sampling distribution of T 2 and hence the p-value for the test
of independence.

It is difficult to obtain the MLEs of the πij in model (2) or those of the pi and qj in model (3)
using numerical optimization. However, one might use the EM algorithm [36] in Equation (4) or
Equation (5) to obtain the required MLEs; see Appendix C for a description of the EM algorithm
in our context. This is also not easy because the EM algorithm is very sensitive to the starting
values in this problem.

Therefore, we consider a Monte Carlo method to obtain the MLEs. Our strategy is to convert
the likelihood functions to posterior densities using prior distributions that leave the likelihood
function unchanged. Then random samples can be drawn from these posterior densities.

In Equation (2) we take⎛
⎝πij, (i, j) ∈ N , 1 −

∑
(i,j)∈N

πij

⎞
⎠ ∼ Dirichlet(1, . . . , 1).

Similarly, in Equation (3) we take p
˜

and q
˜

to be independent with

p
˜

∼ Dirichlet(1, . . . , 1), q
˜

∼ Dirichlet(1, . . . , 1).

Thus, using these ‘uniform’ priors in Equation (2) or Equation (3) and applying Bayes’ theorem,
we will get the required posterior densities which are exactly the same as the likelihood functions.
This is a standard result in Bayesian statistics.

We can now draw samples of π˜ and (p
˜
, q
˜
) from these posterior densities. With these samples,

we can then find the posterior mode which is, in fact, the MLE. Under the whole parameter space,
the joint posterior density is given by

p(π˜ | n˜) ∝
∏

(ij)∈N

{
πij∑

(i,j)∈N πij

}nij

, πij > 0,
∑

(ij)∈N
πij < 1, (7)

and under the restricted parameter space the joint posterior density is given by

p(p
˜
, q
˜
| n˜) ∝

∏
(ij)∈N

{
piqj∑

(i,j)∈N piqj

}nij

, pi, qj > 0
r∑

i=1

pi = 1,
c∑

j=1

qj = 1. (8)

It is not easy to draw samples from Equation (7) or Equation (8) directly because these posterior
densities are intractable. One can use approximate Bayesian computation,[37] but this is not
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necessary in our case. It turns out that we can simply use Monte Carlo optimization; see Robert
and Casella [38, Chapter 5] for details. This latter procedure requires random samples from the
posterior density given in Equation (7).

The Monte Carlo optimization is advantageous because it will find the global maximum value in
the case when there are several local maxima. This is different from standard numerical optimiza-
tion routines which can converge to a local maximum value, and this is erroneous. For example,
the Nelder–Mead and Newton–Raphson algorithms can converge to a local maximum value, and
so these algorithms will not be feasible for our purpose. Moreover, these algorithms may not be
efficient when the number of parameters in the likelihood function is large, something that is true
in our case; see Table 1.

Fortunately, it is easy to draw samples from the posterior density in Equation (7) indirectly
using random draws, not Markov chains (e.g. a Metropolis–Hastings sampler). This is advanta-
geous because it ensures non-repeated sample values with probability one, and no convergence
monitoring is required.

We string out the πij, (i, j) ∈ N , and denote the new vector by γ
˜

= (γ1, . . . , γS)
′, where S is

the cardinality of N . Similarly, we string out the nij, (i, j) ∈ N , and denote the new vector by
t˜ = (t1, . . . , tS)′. Then, as in Equation (7),

p(γ
˜
| t˜) ∝

S∏
s=1

{
γs∑S
s=1 γs

}ts

, γs > 0,
S∑

s=1

γs < 1. (9)

We need to draw γ
˜

from Equation (9) which can be done using random sample generation
techniques.

Now, we make the transformation τs = γs/
∑S

s=1 γs, s = 1, . . . , S − 1, and � = ∑S
s=1 γs. Then,

we have γs = τs�, s = 1, . . . , S − 1 and γS = (1 − ∑S−1
s=1 τs)�. It is now easy to show that the

Jacobin of the transformation is �S−1. Therefore, the joint posterior density function of τ˜ and �

will be

p(τ˜ , � | t˜) ∝
(

S−1∏
s=1

τ ns
s

) (
1 −

S−1∑
s=1

τs

)nS

�nS+S−1. (10)

Then, τ˜ and � in Equation (10), given t˜, are independent with(
τ1, . . . , τS−1, 1 −

S−1∑
s=1

τs

)
| t˜ ∼ Dirichlet(n1 + 1, . . . , nS + 1), � | t˜ ∼ Beta(nS + S, 1), (11)

and it is therefore easy to get samples of τs, s = 1, . . . , S − 1, and � from Equation (11). It is
worth noting that the posterior densities of both τ˜ and t˜ are unimodal. Retransforming, we get
back samples of γs, s = 1, . . . , S, and in turn, πij, (i, j) ∈ N .

However, it is much more difficult to draw samples from Equation (8). Fortunately, the samples
drawn from Equation (7) can be converted to samples of pi, i = 1, . . . , r, and qj, j = 1, . . . , c,
from Equation (8). This is true because it is important to note that we can move from Equations (2)
to (3) via the transformation πij = piqj, (i, j) ∈ N . That is, pi = ∑c

j=1 πij, i = 1, . . . , r, and qj =∑r
i=1 πij, j = 1, . . . , c; recall that πij = 0, (i, j) �∈ N . Thus, if we can draw samples from the

posterior density (7), we have samples from the posterior density (8) automatically.
We denote the generated samples by π

(h)
ij , (i, j) ∈ N , h = 1, . . . , M, and p(h)

i , i = 1, . . . , r,

q(h)
j , j = 1, . . . , c, h = 1, . . . , M. In our numerical examples, we have used M = 5000, a very

conservative choice (i.e. somewhat smaller values of M are mostly adequate). We have computed
the likelihood functions under the independence hypothesis and the whole parameter space and
have picked the largest one in each situation. Note that, from the manner in which the sample
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10 B. Nandram et al.

values are drawn, they are different with probability one. Let π̂ij, (i, j) ∈ N , denote the maximum
likelihood estimates corresponding to the whole space and p̂i, i = 1, . . . , r, q̂j, j = 1, . . . , c,
denote the corresponding maximum likelihood estimates under the hypothesis of independence.
Hence, we have obtained a value of the likelihood ratio statistic T 2 in Equation (6).

To obtain the sampling distribution of T 2, we need to bootstrap the r × c categorical table a large
number of times. For each bootstrap sample (BS), we calculate the value of T 2. We can bootstrap
under the hypothesis of independence to get the sampling distribution under independence. To
obtain the p-value of the test, we simply calculate the proportion of the bootstrap values which
are larger than the observed T 2 value. We can also compute the sampling distribution in the
whole parameter space in a similar manner. The sampling distribution of T 2 is obtained using the
Parzen–Rosenblatt density estimator on the sample values of T 2. In our case, we generate 1000
bootstrap values of T 2.

Finally, we describe how to bootstrap the observed table. To do so, we maintain the sampling
zeros in the observed data, and fill in the positive cells. Note that some small positive cells can
become sampling zeros in the simulated data. Thus, the degrees of freedom is also a random
variable. Let n(o)

ij , (i, j) ∈ N , denote the observed counts with
∑

(i,j)∈N n(o)
ij = n(0). We want to

bootstrap n(o)
ij , (i, j) ∈ N ; we denote the bootstrapped values by nij, (i, j) ∈ N .

Let uj = ∑
i∈Cj

n(o)
ij /n(o), j = 1, . . . , c. We draw (a1, . . . , ac) ∼ Multinomial(n(o), u˜) until

aj > 0, j = 1, . . . , c. To draw samples from the whole space, we define tij = n(o)
ij /

∑
i∈Cj

n(o)
ij ,

(i, j) ∈ N . Next, we draw n˜ j
ind∼ Multinomial(aj, t˜j), j = 1, . . . , c until

∑
j∈Ri

nij > 0, i = 1, . . . , r.
Samples under the independence hypothesis are drawn in a similar manner. We define ti =∑

j∈Ri
n(o)

ij /n(o), i = 1, . . . , r, and draw n˜ j
ind∼ Multinomial(aj, t˜) until

∑
j∈Ri

nij > 0, i = 1, . . . , r.
We repeat the process to obtain 1000 draws of the simulated contingency tables in each case.

5. Numerical analysis

In this section, we present the details of the numerical and computational procedures we have
carried out for illustrative purposes. Specifically, in Section 5.1 we describe six numerical
examples and in Section 5.2 we present a power comparison of X2, G2, D2, F2, C2 and T 2.

5.1. Numerical examples

We use the following six examples for illustrative purposes and to make comparisons of the
different tests. Recall that our likelihood ratio test requires at least one of the zero cells to be a
sampling zero and this is true in each of the six examples.

E1: This example is on a multiple response problem that motivates our research. Bilder and
Loughin [39] presented a joint table of results from a Kansas farmer survey categorizing four
waste storage methods and five sources of veterinary information.
E2: Researchers at the University of Florida classified the stomach contents of alligators
into five categories: Fish, invertebrate, reptile, bird and other. We have reformulated the data
into two categorical variables by crossing lake, sex and size to form one categorical variable.
However, in this example conclusions are problematic because this two-way table comes from
a collapsed table. Agresti [5] used these data to illustrate how to fit multivariate logit models.
E3: These data are based on a classification of body mass index and family income for a US
state in which the data are obtained from the third National Health and Nutrition Examination
Survey.
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E4: This example deals with the classification of the number of graduate degrees granted by
year and degree type (PhD,AM, MAS, MAF, MAI, MME) in the Department of Mathematical
sciences at Worcester Polytechnic Institute. These data were made available by the secretary
of the said department.
E5: This example is based on an Inventory Management Programme. It is a standard practice
to put the complete stock of 1120 T-shirts into the market on February 1 and inventory is taken
every Saturday thereafter for 52 weeks ending on January 31 of the next year. This data set
categorizes the number of sales of T-shirts by four sizes and four styles after the first week of
sales on 8 February 2003.
E6: This data set summarizes the results of a survey of women employed as mathematicians
or statisticians to relate years since bachelors degree and monthly salary. Zelterman [35] used
this contingency table as an illustrative example.

These tables are quite large and sparse. We present a summary of the characteristics of the six
data sets in Table 1. In E4, we are sure that some zero cells are structural zeros, but this information
is not important to perform our likelihood ratio test. Thus, for convenience we treat all six data
sets equally and a test of independence of the two categories is needed. It is useful to note that
for E6, the table density (η = 0.19) makes it difficult for the standard Pearson X2 or G2 to cope;
also η = 1.31 for E5. However, note that when sampling zeros are treated as a combined positive
cell, the table densities are much larger.

Table 2 lists the p-values corresponding to the different tests of the examples. Except for G2 and
T 2, for all examples we have used the complete tables (i.e. all cells are included). In E2 and E4
there are virtually no differences among the tests but for E1, E3, E5 and E6 there are significant
differences. In E1 T 2 agrees with X2, G2 and D2 but differs from F2 and C2. In E3 T 2 agrees with
D2 and C2 but not X2, G2 and F2. In E5 T 2 agrees with all tests except F2. In E6 T 2 agrees with
all tests except G2 and D2. We note that while E1 and E6 have large numbers of zeros, E2 has just
24 zeros.

We have looked at the p-values for incomplete tables (i.e. without the cells with zero counts) for
X2, F2, C2.We can not do so for D2 because it was developed for sparse complete tables.We noticed
important differences in X2, F2 and C2 for the complete and the incomplete tables except for E2
and E4. In E1 the p-values with F2 and C2 are now .00002 and .00000. In E3 F2 gives a p-value
of .58534 and C2 .00044. In E5 F2 has a p-value of .76705. The differences are more dramatic
in E6. Without the zero cells in E6 for X2, F2 and C2 the p-values are all .00000; now it is very
different from T 2 but similar to G2 and D2. As indicated by Garcia-Perez and Nunez-Anton,[34]
X2 does not perform well when η < 2. Researchers have considered further adjustments to the
Pearson X2 statistic; see, for example, Davis [40] who obtained an improved approximation to
the distribution of X2 by using its first three moments, but this is still an approximation. The act

Table 2. P-values for the test of independence by example.

Example X2 G2 D2 F2 C2 T2

E1 .00015 .00000 .00002 .11582 .44235 .00000
E2 .00021 .00000 .00000 .00000 .00030 .00151
E3 .02748 .00043 .11490 .03369 .32231 .21923
E4 .00374 .00000 .00012 .00000 .00412 .04269
E5 .41613 .07370 .55551 .02737 .40498 .81782
E6 .23801 .00000 .00020 .99999 .99999 .96922

Note: X2 is the Pearson chi-squared statistic, G2 is the likelihood ratio statistics, D2 is the adjusted Pearson chi-squared statistic, F2 is the
Freeman–Tukey statistic, C2 is the Cressie–Read statistic and T2 is the new likelihood ratio statistic.
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Figure 1. Plots of the sampling distributions of the T2 statistic under the independence model (solid) and whole space
(dotted) by example.

of replacing an incomplete table by a complete table will increase the degrees of freedom and
the observed value of the test statistics because expected values are now nonnegative instead of
zeros.

Figure 1 shows the sampling distributions of the proposed likelihood ratio test statistic T 2 under
the independence hypothesis and the unrestricted parameter space. It is clear that the distributions
are not symmetric and hence not normal. Also, it is apparent that T 2 does not follow a chi-squared
distribution. We note that in all six examples, the two sampling distributions are very different;
specifically the unrestricted distributions are to the right of the restricted distributions. This is very
clear for E1, E2, E3, E4. In E5 there are minor differences between the two distributions and in E6
there is significant overlap between the two sampling distributions. As expected, the unrestricted
distributions have more spread than the restricted ones. Therefore, it is clear that the proposed
likelihood ratio test can discriminate very well between the null hypothesis of independence and
the alternative hypothesis.
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Table 3. Actual computation times of the three parts of the likelihood ratio test for the six examples.

Real time

Example Dimension n LR Boot C tt

E1 11 × 24 279 1.98 7:34.51 0.08 7.610
E2 16 × 5 219 1.53 5:31.53 0.08 5.552
E3 6 × 28 539 2.72 10:53.88 0.08 10.945
E4 6 × 17 270 2.02 6:38.44 0.08 6.676
E5 4 × 4 21 1.39 2:37.69 0.08 2.653
E6 28 × 26 129 2.73 9:43.11 0.08 9.765

Note: n is the sample size; LR refers to the time (seconds) to compute the observed likelihood ratio test statistc (two MLE’s); Boot is the
time to draw the 1000 BSs (the entries a : b.cd means a minutes and b.cd seconds, e.g. for E1 it took 7 min and 34.51 s to draw the BSs);
C is the time (minutes) taken to count the number of bootstrap values which are at least as large as observed test statistic (p-value); and tt
is the total time (minutes) to complete all the computations which were done on our 850 MHz computer.

We have recorded the time to do the computation using our likelihood ratio test. On our 850 MHz
station the computation time to obtain the p-value of the likelihood ratio test has three parts which
are (a) computation of the observed likelihood ratio test statistic, (b) drawing the 1000 BSs and
(c) counting the number of BSs with the value of the test statistic at least as large as the observed
value. In Table 3 we have presented these three times and the total time for all six examples. There
are two things to observe. First, the bulk of the computation time is taken up to draw the BSs
and the times taken to compute the observed test statistic and to do the counting are negligible.
Second, as expected, the time to draw the BSs depend on the size of the contingency table. The
total time ranges from 2.7 min for E5 (a small table) to 10.9 min for E3 (a large table).

We have performed a stability analysis on our procedure. There are two sample sizes we need to
select. These are the sample size for the stochastic optimization (SO) to obtain the MLEs and the
sample size for the BS to do the Monte Carlo integration (counting) for the p-value. It turns out
that larger sample sizes are needed for SO than for BS. Thus, we have taken the SO sample size
to be 5000 and the BS sample size to be 1000, a reasonable specification. So we discuss stability
with respect to the SO sample size. We give an illustration for E5; the same procedure works for
all examples. For SO with sample sizes of 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000
the p-values are respectively .923, .927, .834, .779, .797, .812, .790, .807, .805. Clearly, then for
SO sample sizes larger than about 3000 there is a high degree of stability. We have found similar
patterns for the other five examples.

We have also looked at the EM algorithm more carefully. We observed that the MLEs are very
sensitive to the specifications of the starting values of the EM algorithm. We believe that the
difficulty arises because there is no real information about N , the latent variable which represents
the total sample size. Expectation is taken over N in the EM algorithm. Motivated by the difficulty
in using the EM algorithm, we have integrated N (an important innovation) to perform the SO.
This provides a stable algorithm.

We have applied Fisher’s exact test to our six examples. On SAS 9.2 Fisher’s exact test uses
the network algorithm [19] which needs large workspace for even moderately large tables like the
ones we are discussing. With roughly 24 or more cells (e.g. a 4 × 6 or a 3 × 8 contingency table)
Fisher’s exact test cannot be computed. Also note that SAS does not account for structural zeros;
all zeros are treated as sampling zeros. For E5, a 4 × 4 contingency table with a sample size of 21,
SAS gives a p-value of .58170. As expected, because of the conservative nature of Fisher’s exact
test this p-value should be smaller than the p-value from T 2 which is .81782. For the other five
examples, SAS responded,‘WARNING: Computing exact p-values for the problem may require
much time and memory. Press system interrupt key to terminate exact computations.’ We now
understand that for large tables even without structural zeros the computation of the p-value for
Fisher’s exact test is an open problem. One possibility is to develop a Monte Carlo method.
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14 B. Nandram et al.

5.2. Power comparison

In this section, we use the data from E4 to compare the power functions of the four statistics, X2,
G2, F2, C2, D2 and T 2. For the power comparison any of the six examples can be used; it does
not matter that E4 is a somewhat artificial example.

To describe departures from the null hypothesis of independence, we consider a mixture dis-
tribution under the alternative hypothesis. We assume that the distribution under the alternative
hypothesis is multinomial with cell probabilities πij = (1 − ω)p̃iq̃j + ωπ̃ij, where p̃i, q̃j and π̃ij

are obtained from the observed contingency table. Here, ω = 0 corresponds to the null hypothesis
distribution and ω = 1 corresponds to the alternative hypothesis of dependence. Therefore, values
of ω close to zero give local alternatives, and larger values of ω give larger departures from the
null hypothesis.

Letting vα denote the critical value of an upper tailed test of size α, the power function is
given by

P{V > vα | n˜ ∼ Multinomial(n, π˜ )}, (12)

where V is one of the six test statistics (X2, G2, D2, F2, C2 and T 2). Here n is the observed sample
size for E4. The data are generated in the same way as described before for calculating the p-values;
the only difference being that, in this case, the data are generated from a Multinomial(n, π˜ )

distribution in Equation (12).

Table 4. Comparison of the power functions for Example 4 of X2, G2, D2, F2, C2 and T2 by the test size, α, and the
mixture coefficient, ω, in the distribution under the alternative hypothesis.

α ω X2 G2 D2 F2 C2 T2

.050 0.0 .050.002 .050.002 .050.002 .050.002 .050.002 .050.002
0.1 .053.002 .059.002 .063.002 .056.002 .055.002 .057.002
0.2 .075.003 .092.003 .104.003 .086.003 .085.003 .092.003
0.3 .145.004 .182.004 .212.004 .161.004 .177.004 .171.004
0.4 .283.005 .354.005 .404.005 .303.005 .337.005 .334.005
0.5 .512.005 .604.005 .655.005 .529.005 .583.005 .540.005
0.6 .760.004 .835.004 .868.003 .771.004 .820.004 .745.004
0.7 .935.002 .964.002 .974.002 .939.002 .958.002 .901.003
0.8 .991.001 .997.001 .998.000 .992.001 .995.001 .967.002

.025 0.0 .025.002 .025.002 .025.002 .025.002 .025.002 .025.002
0.1 .028.002 .031.002 .034.002 .030.002 .029.002 .035.002
0.2 .041.002 .054.002 .060.002 .045.002 .047.002 .059.002
0.3 .085.003 .120.003 .138.003 .095.003 .110.003 .114.003
0.4 .192.004 .259.004 .296.005 .202.004 .240.004 .250.004
0.5 .391.005 .497.005 .537.005 .408.005 .470.005 .442.005
0.6 .654.005 .760.004 .797.004 .664.005 .738.004 .663.005
0.7 .883.003 .938.002 .951.002 .892.003 .927.003 .849.004
0.8 .979.001 .992.001 .995.001 .984.001 .990.001 .944.002

.010 0.0 .010.001 .010.001 .010.001 .010.001 .010.001 .010.001
0.1 .010.001 .013.001 .015.001 .011.001 .012.001 .014.001
0.2 .014.001 .026.002 .031.002 .020.001 .023.002 .025.002
0.3 .033.002 .063.002 .076.003 .044.002 .057.002 .060.002
0.4 .086.003 .166.004 .191.004 .113.003 .149.004 .147.004
0.5 .218.004 .362.005 .413.005 .272.004 .338.005 .300.005
0.6 .464.005 .650.005 .687.005 .527.005 .615.005 .525.005
0.7 .744.004 .887.003 .909.003 .810.004 .864.003 .748.004
0.8 .928.003 .983.001 .987.001 .960.002 .976.002 .890.003

Note: The distribution under the alternative hypothesis is multinomial with cell probabilities (1 − ω)p̃i q̃j + ωπ̃ij , where p̃i , q̃j and π̃ij are
obtained from the observed contingency table. In each entry the notation ab means that a is the estimate of the power and b is the standard
error of the estimate.
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The critical value is obtained by taking the 100(1 − α)th percentile point of the test statistics
from the data generated for the p-values. We also use a method based on the Parzen–Rosenblatt
density estimator to find the critical value; however, the two answers are very similar. Since the
power function in (12) is a function of ω ∈ [0, 1], we vary ω in this range to study it. For each value
of ω, we generate 1000 contingency tables, and for each table we calculate the six test statistics
(X2, G2, D2, F2, C2 and T 2). Then, we obtain the proportion of values of each of the test statistics
exceeding its critical value. We have repeated the entire process 10 times to get 10 critical values
(p-values) and 10 estimated powers at each value of ω. We actually have 10 estimated power
functions for each test; these curves are very close. However, for each test, our final estimated
power function is obtained by averaging the 10 estimated powers at each of the selected values
of ω. We also computed the overall standard error by combining the 10 standard errors at each
value of ω.

In Table 4, we present the power of each of the six statistics at values of ω = .00, .10, . . . , .80,
for three test sizes, .050, .025, and .010. The highest power function corresponds to D2; this is
followed in rough order by G2, C2, T 2, F2 and X2. For strong dependence, X2 tends to have higher

Figure 2. Plots of the estimated power functions of the six tests for E4, α = .050.
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16 B. Nandram et al.

Figure 3. Plots of the estimated power functions of the six tests for E4, α = .025.

power than T 2. For weak dependence, the power functions of these tests are very similar, but for
at least moderate dependence, D2, C2 and G2 have higher powers. For example, at size .025 for
ω = 0.2, X2, G2, D2, F2, C2 and T 2 have powers .041, .054, .060, .045, .047 and .059, respectively;
for all these cases, the numerical standard errors are smaller than .002.Also at size .025 for ω = .6,
X2, G2, D2 and T 2 have powers of .654, .760, .797, .664, .738 and .663, respectively; for all these
cases, the numerical standard errors are smaller than .005. As seen in Table 4 similar patterns are
observed for sizes α = .05, .01.

We have plotted the estimated power functions of the six test statistics for E4 in Figures 2–4.
The curves are smooth because of the averaging we have done on the 10 estimated powers. The
curve for D2 is the highest, followed by G2, C2, F2 then T 2 which almost always is higher that
the curve for X2. This is true for all three sizes (.050, .025, .010) we have considered.

The natural question that comes up is, ‘Why does the test based on T 2 appear not as the best?’
First, the test based on G2 is inappropriate because an observed zero cell count does not have any
contribution regardless of whether it is a sampling zero or a structural zero. That is, G2 does not
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Figure 4. Plots of the estimated power functions of the six tests for E4, α = .010.

account for randomness of the sampling zeros. The proposed likelihood ratio test based on T 2 is
actually a corrected version of G2 for contingency tables with both sampling and structural zeros.
We are, therefore, left with X2, F2, C2 and D2; D2 was constructed specifically for sparse tables.

According to Zelterman,[35] ‘Under sequences of local alternative hypotheses the test based
on D2 exhibits moderate power when the X2 test is biased.’ He also stated that

With a large, sparse multinomial distribution where n and k are both large, X2 and D2 will usually behave as normal
random variables with means and variances that are unrelated to the chi-squared distribution. In the sparse distribution,
X2 and D2 are not equivalent and X2 will accept the null hypothesis too often under certain alternative hypotheses.

It is true that X2 and D2 treat the zeros exactly the same (i.e. when the (i, j)th cell is zero, the
same value λ̂ij under independence is added to X2 or D2). The benefit of D2 is that, when the cell
counts are positive, D2 helps to remove the skewness in X2, so that normality is reasonable under
independence.

Both F2 and C2 are reasonable statistics with higher power than T 2. They can be used with both
sampling zeros and structural zeros. The trouble here is that the expected value of a zero cell is
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18 B. Nandram et al.

always nonnegative (mostly positive) and this increases the degrees of freedom and the values of
the test statistics, which can lead to much larger p-values than without the zero cells as in E6. This
is also true for the X2 statistic. It is also true that the structural zeros can be eliminated from the
table. However, when there is uncertainty about whether zeros are structural or sampling zeros,
none of these tests can be used.

So, although the power comparison is a guide for choosing the optimal test and D2 has the
highest power, we prefer T 2 because it is the one that actually accounts for the uncertainty about
sampling zeros and structural zeros and it corrects for the deficiency in G2. Moreover, the test
based on T 2 is a test in which the null hypothesis is that of quasi-independence, not independence
as in standard contingency tables. When there are many sampling zeros, X2, G2, F2, C2 and D2

tend to give overly strong evidence against the null hypothesis.
Therefore, T 2 is a very useful statistic, and computation involved to find its p-value is worth the

effort; it takes less than 12 min to compute the p-value or the power of T 2 on our 850 MHz com-
puter. It takes slightly less time to find the p-values of the other tests when the ‘exact’distributions
(not asymptotic distributions) are used.

6. Concluding remarks

We have considered a likelihood ratio test for quasi-independence in large two-way categorical
tables which are likely to have both structural and sampling zeros. Our procedure requires at least
one sampling zero, and it is competitive to some alternatives. One draw back of our procedure
is that it is a conditional (on the set of positive cells) test but it is not conditional on the margins
as in Fisher’s exact test. It is also true that T 2 is an exact test and it does not rely on asymptotic
theory.

We have shown how to obtain the exact sampling distribution of the likelihood ratio test statistic
under the independence hypothesis, and have therefore obtained its exact p-value. We calculated
both the MLEs and the distribution of the likelihood ratio statistic using Monte Carlo methods.
While D2 has higher power than X2, G2, F2, C2 and T 2, we believe that the test based on T 2

is most appropriate for the problem with many structural and sampling zeros and when there is
uncertainty about which cells are structural zeros or sampling zeros (i.e. cells with zero counts
are combined into a single positive cell and one does not have to know the count in this cell).

It is true that our procedure resembles a Bayesian method. However, the Bayesian method
requires calculation of the Bayes factor [41] which is sensitive to prior specifications. This is also
a computationally intensive procedure. An alternative is to use Bayesian estimation procedure
which is the main strength of Bayesian statistics. Nandram and Choi [17] has a possible procedure
which we plan to extend to two-way contingency tables with structural and sampling zeros.

In many problems, some cells are sampling zeros and others are structural zeros. However,
when there is uncertainty about whether a specific cell is a sampling zero or a structural zero, an
important practical problem arises. One would then need to incorporate information about which
cells are more likely to be sampling zeros. For example, in some tables, one piece of information
is that the zeros ‘near’ the positive cells are likely to be sampling zeros, not structural zeros. Thus,
one would need to use a Bayesian approach (e.g. [2]).

Finally, we note that we have considered a simple random sample in this article. We plan to
extend this work to more complex sample designs (e.g. two-stage cluster sampling), where the
sample schemes must be taken into consideration for a test of independence; p-values obtained
under the assumption of simple random sampling will be too small if the data are obtained under
cluster sampling. Similar problems exist for stratified random sampling. This is a much more
complex problem and it is one of our on-going activities. However, Nandram et al. [42] presents
a Bayesian approach using surrogate sampling.
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Appendix 1. Ordinal r × c categorical tables

We consider a r × c categorical table and the case in which both categorical variables are ordinal. The case of one ordinal
variable is simpler. We show how to extend our method to two ordinal variables; our method does not work immediately
but the overall principle is similar. We use a method for ordinal data, similar to McCullagh [43] which treats the response
categories as contiguous intervals on a continuous scale with unknown cut-points.

Denoting the first categorical variable by I and the second by J , we assume that

P(I = i) = pi and P(J = j | I = i) = qj | i, i = 1, . . . , r, j = 1, . . . , c,

where the levels of the categorical variables are not necessarily equally spaced or numeric. Let γi = ∑i
i′=1 pi′ and

δj | i = ∑j
j′=1 qj′ | i, i = 1, . . . , r, j = 1, . . . , c. The cell counts are nij , i = 1, . . . , r, j = 1, . . . , c, with

∑r
i=1

∑c
j=1 nij = n,

the sample size. We take the general (unrestricted) model to be

ln

(
γi

1 − γi

)
= θi, i = 1, . . . , r − 1,

ln

(
δj | i

1 − δj | i

)
= φj − αi

βi
, i = 1, . . . , r, j = 1, . . . , c − 1, (A1)

where −∞ < αi < ∞, βi > 0 and for identifiability we take αr = 0 and βr = 1. The cut-points are −∞ = θ0 < θ1 <

· · · < θr−1 < θr = ∞ and −∞ = φ0 < φ1 < · · · < φc−1 < φc = ∞.
It follows from Equation (A1) that

pi = eθi

1 + eθi
− eθi−1

1 + eθi−1
, i = 1, . . . , r

and

qj | i = e(φj−αi)/βi

1 + e(φj−αi)/βi
− e(φj−1−αi)/βi

1 + e(φj−1−αi)/βi
, i = 1, . . . , r, j = 1, . . . , c.

Thus, without any restriction on the two categorical variables, we have

πij = piqj | i =
{

eθi

1 + eθi
− eθi−1

1 + eθi−1

} {
e(φj−αi)/βi

1 + e(φj−αi)/βi
− e(φj−1−αi)/βi

1 + e(φj−1−αi)/βi

}
(A2)

and under independence in Equation (A2), qj | i = qj where qj is obtained by setting αi = 0, βi = 1, i = 1, . . . , r (i.e.

πij = piqj under independence). For completeness we define ηj = ∑j
j′=1 qj′ and ln{ηj/(1 − ηj)} = φj , j = 1, . . . , c.

Again, letting N denote the set of positive cells, the likelihood functions, analogous to Equations (2) and (3), are easy
to write down. But now under the null hypothesis the likelihood is a function of θ˜ and φ

˜
and without any restriction

it is a function of θ˜ , φ
˜
, α˜ and β

˜
. Thus, the likelihood ratio test can be obtained. The only remaining issue is how to

obtain the MLEs.
We transform the parameters to the interval (0, 1) and use independent uniform priors on all the parameters. Thus,

the joint posterior densities under the two hypotheses are proper. Then, to draw samples, we simply use a Gibbs sampler
with grids dividing (0, 1) into 100 subintervals or so. Again, we only need to sample from the joint posterior under the
alternative hypothesis to obtain θ˜ , φ

˜
, α˜ and β

˜
, and therefore, πij , (i, j) ∈ N using Equation (A2). Then, samples of pi and

qi are obtained as we have done for the r × c categorical table. Thus, under the null hypothesis we can generate samples
of θi and φj from the respective joint posterior density and, therefore, the MLEs using SO.
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In the same spirit, our procedure can be applied to multi-way tables. As an example, for a r × c × � contingency table,
denoting the first categorical variable by I , the second by J and the third by T , we assume that

P(I = i) = pi, P(J = j | I = i) = qj | i and P(T = t | I = i, J = j) = ut | i,j ,

where i = 1, . . . , r, j = 1, . . . , c, t = 1, . . . , �, and again the levels of the categorical variables are not necessarily equally
spaced or numeric. In principle, one can proceed in a similar manner as for two-way tables, but this will need further
research.

Appendix 2. multi-dimensional tables

Our method can be extended to multi-way tables. For simplicity, consider a three-way table (r × c × �). We have cell
probabilities πijk , i = 1, . . . , r, j = 1, . . . , c, k = 1, . . . , � and cell counts nijk , i = 1, . . . , r, j = 1, . . . , c, k = 1, . . . , �,

where
∑r

i=1
∑c

j=1
∑�

k=1 πijk = 1 and
∑r

i=1
∑c

j=1
∑�

k=1 nijk = n, the sample size. We want to test the null hypothesis of
independence, which is

πijk = piqjtk , i = 1, . . . , r, j = 1, . . . , c, k = 1, . . . , �,

where
∑r

i=1 pi = 1,
∑c

j=1 qj = 1 and
∑�

k=1 tk = 1. Again, we assume that all margins are positive and there may be
many zero cells with at least one sampling zero. We also use the standard assumption of multinomial sampling.

Let N denote the set of positive cells. Then, the null hypothesis of quasi-independence is given by the restriction,

πijk =
{

piqjtk , (i, j, k) ∈ N
0 otherwise.

(A3)

Also let Ri = {(i, j, k) : nijk > 0, j = 1, . . . , c, k = 1, . . . , �}, i = 1, . . . , r, Cj = {(i, j, k) : nijk > 0, i = 1, . . . , r, k =
1, . . . , �}, j = 1, . . . , c, and Tk = {(i, j, k) : nijk > 0, i = 1, . . . , r, j = 1, . . . , c}, k = 1, . . . , �, where Ri is the set of
positive counts in ith plane (j × k), Cj is the set of positive counts in jth plane (i × k) and Tk is the set of positive
counts in kth plane (i × j). In Equation (A3) pi = ∑

(j,k)∈Ri
πijk , i = 1, . . . , r, qj = ∑

(i,k)∈Cj
πijk , j = 1, . . . , c and tk =∑

(i,j)∈Tk
πijk , k = 1, . . . , �. Again, inference is conditional on N .

Analogous to Equations (2) and (3) we now construct the truncated multinomial distributions for the positive cells
under the unrestricted parameter space and the restricted parameter space (i.e. the null hypothesis). Under the unrestricted
parameter space, we have

p(n˜ | π˜ ) = n!
∏

(ijk)∈N

1

nijk !

{
πijk∑

(i,j,k)∈N πijk

}nijk

, nijk > 0,
∑

(i,j,k)∈N
nijk = n, (A4)

and under the restricted parameter space, the corresponding distribution is given by

p(n˜ | p
˜
, q
˜
) = n!

∏
(ijk)∈N

1

nijk !

{
piqjtk∑

(i,j,k)∈N piqjtk

}nijk

, nijk > 0,
∑

(i,j,k)∈N
nijk = n. (A5)

We can obtain the likelihood ratio test in a manner similar to the one for the r × c table. The sampling-based method is
used to obtain the MLEs in Equations (A4) and (A5). The bootstrap method, used to obtain the p-value of the test, should
work the same as for the r × c table. Other tests for the three-way table can be performed as well.

Appendix 3. EM algorithm

We can perform the EM algorithm in Equation (4) to obtain the MLEs of the parameters. Here, the observed data are
nij , (i, j) ∈ N and the missing data are N , the effective sample size.

Because N | π˜ ∼ NB{n,
∑

(i,j)∈N πij}, we have E(N | π˜ ) = n/
∑

(i,j)∈N πij . This is the E-step.
Now, given π˜ , N , [{nij , (i, j) ∈ N }, N − ∑

(i,j)∈N nij] ∼ Multinomial[N , {πij , (ij) ∈ N }, 1 − ∑
(ij)∈N πij)] and so the

MLEs are π̂ij = nij/N , (ij) ∈ N . This is the M-step.
Thus, it is easy to perform the EM algorithm. The difficulty is that, in this specific problem, the algorithm is sensitive

to the starting values. This is partly due to the fact that there is no real information about N ; thus we have integrated N
out of the likelihood function.
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