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Abstract

One of the most important changes in high-latitude ecosystems in response to climatic warming may be the thawing

of permafrost soil. In upland tundra, the thawing of ice-rich permafrost can create localized surface subsidence called

thermokarst, which may change the soil environment and influence ecosystem carbon release and uptake. We

established an intermediate scale (a scale in between point chamber measurements and eddy covariance footprint)

ecosystem carbon flux study in Alaskan tundra where permafrost thaw and thermokarst development had been

occurring for several decades. The main goal of our study was to examine how dynamic ecosystem carbon fluxes

[gross primary production (GPP), ecosystem respiration (Reco), and net ecosystem exchange (NEE)] relate to

ecosystem variables that incorporate the structural and edaphic changes that co-occur with permafrost thaw and

thermokarst development. We then examined how these measured ecosystem carbon fluxes responded to upscaling.

For both spatially extensive measurements made intermittently during the peak growing season and intensive

measurements made over the entire growing season, ecosystem variables including degree of surface subsidence,

thaw depth, and aboveground biomass were selected in a mixed model selection procedure as the ‘best’ predictors of

GPP, Reco, and NEE. Variables left out of the model (often as a result of autocorrelation) included soil temperature,

moisture, and normalized difference vegetation index. These results suggest that the structural changes (surface

subsidence, thaw depth, aboveground biomass) that integrate multiple effects of permafrost thaw can be useful

components of models used to estimate ecosystem carbon exchange across thermokarst affected landscapes.
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Introduction

Climate change has led to an increase in mean annual

air temperature on a global scale (ACIA, 2005). Among

terrestrial ecosystems, high-latitude ecosystems (boreal

forest and tundra) have undergone the most drastic

changes over the last 100 years (Overpeck et al., 1997;

Serreze et al., 2000); the increase in temperature has

been nearly three times greater than the global mean

(IPCC, 2007). The temperature increase in high-latitude

ecosystems has contributed to thawing of permafrost

(ground that is frozen for more than 2 consecutive

years) (Osterkamp & Romanovsky, 1999; Hinzman

et al., 2005). In upland tundra, thawing of ice-rich

permafrost can create localized surface subsidence

called thermokarst (Davis, 2001; Jorgenson et al., 2006).

This results in permanent land surface subsidence

(Schuur et al., 2008) due to the draining of water that

formerly upheld the ground in the form of ice-wedges.

The scale and magnitude of thermokarst affects local

hydrology (Jorgenson et al., 2006) and may bring greater

changes in soil properties such as increased tempera-

ture, moisture, and nutrient availability than increased

degree of permafrost thaw alone.

Permafrost is distributed over 14% of the global land

surface and stores more than 50% of terrestrial carbon

(C, 1672 Pg of soil C, 1 Pg 5 1� 1015 g) as soil organic

matter (Schuur et al., 2008; Tarnocai et al., 2009). The

frozen conditions of permafrost slow down decomposi-

tion of annual plant litter inputs, storing them as new

soil organic matter every year. Thawing of permafrost

and thermokarst development may stimulate organic

matter decomposition as a result of altered soil proper-

ties, and increased rates of decomposition may in turn

exacerbate global scale warming. Some researchers
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have observed increased net ecosystem exchange of

CO2 (NEE) from high-latitude ecosystems as a result

of increased air and soil temperature, releasing more

carbon to the atmosphere as greenhouse gases (Chapin

et al., 2000; Oechel et al., 2000), whereas others have

found that increased soil moisture and temperature are

directly responsible for increased NEE (Oberbauer et al.,

1992). Indirectly, increased temperature in permafrost

soil may stimulate soil organic matter decomposition

and release nutrients into the soil, which in turn

positively feeds back to faster decomposition of soil

organic matter (Mack et al., 2004).

Alternatively, changes in soil properties caused by

permafrost thaw and thermokarst development

may stimulate carbon uptake by increased primary

production in the permafrost zone. Previous studies

have observed the effects of climate change on carbon

uptake in high-latitude ecosystems including increased

primary production (Schuur et al., 2007) and expansion

and enlargement of shrubs and invasion of trees in

tundra (Macdonald et al., 1993; Sturm et al., 2005). This

has the potential to offset, in part, carbon loss from soil

organic matter decomposition. Therefore, changes

in tundra carbon release and uptake as a result of

permafrost thaw and thermokarst development

will vary based on the processes that stimulate

decomposition (i.e. soil temperature and moisture

availability) and those that stimulate aboveground

primary production via increased nutrient availability

(Shaver et al., 2000, 2001).

In an upland tundra ecosystem, the progression of

permafrost thaw and thermokarst development over

several decades in the landscape has led to increases

in primary production and changes in plant species

composition from tussock forming sedge species to

shrub species (Schuur et al., 2007). At the initial stage

of permafrost thaw and thermokarst development, the

ecosystem was a net carbon sink because of increased

primary production (Vogel et al., 2009). However, at

the later stage of thaw, the ecosystem was a net carbon

source because of increased ecosystem carbon

emissions, particularly from decomposition of old

carbon stored in the deeper permafrost layer (Schuur

et al., 2009). These patterns in ecosystem carbon

emissions and uptake corresponded to permafrost

thaw and thermokarst terrain that had developed

approximately 50 or more years.

The changes in ground topography as a result

of thermokarst driven subsidence has resulted in a

complex microtopography (MT) where subsided areas

collect water and can become water saturated, while

relatively elevated areas become drier within the same

site. Our previous observations indicated that the

microsites (patches of surface subsidence) had higher

soil temperature, higher soil moisture, and more shrub

growth (Lee et al., 2007). Supporting these observations,

we observed greater belowground CO2 production in

areas with increased permafrost thaw and surface sub-

sidence, likely as a result of increased rate of soil

organic matter decomposition (Lee et al., 2010). These

results indicated that ecosystem variables such as soil

temperature, aboveground plant biomass, and degree

of ground subsidence could be used as proxy variables

for ecosystem carbon fluxes in sites with thawing

permafrost and thermokarst development.

Measurements from Schuur et al. (2009) and Vogel

et al. (2009) were well replicated over time, but those

measurements were taken at relatively few points dis-

tributed throughout the study area. Intensive sampling

at a point scale over time describes the large temporal

variability (i.e. diurnal carbon cycles and seasonal car-

bon cycles) quite well, while eddy covariance tower

measurements integrate one, much larger area than

those taken from a point scale. However, thermokarst

terrain is composed of discrete and localized landscape

features that form through time and then persist on the

landscape, acting as independent units in that most

ecosystem measurements taken 5–15 m apart show no

sign of similarity (Lee et al., 2007). Several studies have

shown that carbon flux in tundra is highly variable

throughout the day and year (Heikkinen et al., 2002;

Kwon et al., 2006). Additionally, aboveground biomass

and NDVI may also be highly variable year to year in

tundra ecosystems (Boelman et al., 2005), which in turn

may be related to high variability in tundra ecosystem

gas exchange (Boelman et al., 2003). A multiscale ob-

servational study suggested that due to the spatial

heterogeneity in arctic systems, it is important to de-

termine the relationships between measurements taken

at fine scales and at coarser scales especially for leaf area

index (Williams et al., 2008). Thermokarst terrain varies

substantially in vegetation, thaw depth (TD), and

drainage characteristics. These characteristics suggest

that a study design may need to incorporate many

point measurements across a relatively large area to

understand how permafrost thaw and thermokarst, in

particular, affects landscape scale carbon balance

(i.e. hundreds of meter square area). Intensive temporal

measurements at this ‘intermediate scale’ would take a

prohibitive amount of time and resources. Therefore,

correlations between relatively simple ecosystem

variables and carbon flux would be useful for determin-

ing carbon flux from a larger area.

Upscaling is an extrapolating process that uses a

point scale and/or site-specific scale measurements

to predict ecosystem or earth system processes (Harvey,

2000). In terrestrial systems, many processes are

spatially heterogeneous and non-linear. Because of this,
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it is important to recognize spatial patterns when pre-

dicting ecosystem processes to minimize introduction

of significant errors imposed by spatial heterogeneity in

terrestrial systems. We were interested in characterizing

spatial heterogeneity of ecosystem properties and eco-

system carbon fluxes in tundra landscape created by

permafrost thaw and thermokarst development using

geostatistical analysis to assist in upscaling of ecosys-

tem measurements. We used a mixed model procedure

that included both independent variables known to

generally correlate with ecosystem carbon dynamics

in the arctic [i.e. soil temperature, moisture, vegetation

biomass, normalized difference vegetation index

(NDVI)] in combination with variables that are unique

to locations with permafrost thaw (i.e. surface subsi-

dence and TD). In addition, we examined the spatial

structure of the explanatory variables for potential use

in upscaling of ecosystem carbon balance under scenar-

ios such as permafrost thaw and thermokarst develop-

ment from northern regions.

Materials and methods

Site description

This study was conducted in upland tundra near Healy, Alaska,

just outside of Denali National Park [Eight Mile Lake (hereafter

‘EML gradient sites’): 6315204200N, 14911501200W; Schuur et al.,

2009]. At this site, ground temperature and deep permafrost

temperatures to depths of 30 m have been monitored since 1985

(Osterkamp & Romanovsky, 1999). Ground subsidence as a

result of permafrost thaw and thermokarst development has

also been observed within the landscape (Osterkamp et al.,

2009). The area is a gentle north-facing slope (o51) with

discharge water draining into the adjacent EML. The organic

horizon, 0.45–0.65 m thick, covers cryoturbated mineral soil that

is a mixture of glacial till (small stones and cobbles) and

windblown loess. Permafrost was found within one meter of

the soil surface, classifying these soils in the order Gelisol.

Three sites were established in 2003 based on the degree of

permafrost thaw and resulting ground subsidence (Schuur

et al., 2007): the Minimal Thaw site is the least disturbed of

the three sites and is a typical moist acidic tussock tundra site

scarcely covered by dwarf shrub sub-layer dominated by

tussock forming sedges (Eriophorum vaginatun and Carex

spp.) and an understory of mosses and lichens, with little

ground subsidence. The Moderate Thaw site is located adja-

cent to the permafrost monitoring borehole (Osterkamp &

Romanovsky, 1999), where patchy areas of ground subsidence

have started to occur. The vegetation composition of the

Moderate Thaw site was similar to the Minimal Thaw site,

but with increased biomass of all plant groups. The Extensive

Thaw site contains large-scale ground subsidence and shrubs

such as blueberry (Vaccinium uliginosum) and cloudberry (Ru-

bus chamaemorus), that have become the dominant vegetation

at the expense of tussock-forming sedges (Schuur et al., 2007).

Soil organic pools to a depth of 1 m averaged 59.8 �
2.8 kg C m�2 across all three sites (Schuur et al., 2009). The

ratio of carbon to nitrogen (C : N) in surface 5–15 cm soils

ranged from 33.4 to 57.6 across all three sites, and the C : N

at the three sites were not statistically different (H. Lee,

unpublished results, 2009). The mean active layer measured

from 2004 to 2006 at the Extensive Thaw site (78.3 � 4.5 cm)

was greater than that of the Minimal Thaw (68.7 � 2.0 cm),

with Moderate Thaw (70.0 � 2.0 cm) being the intermediate,

but not significantly different from the other sites (Vogel et al.,

2009). These different moisture conditions often covary with

soil temperature, microsite differences in plant community

composition, and increased active layer thickness (ALT), with

more saturated areas having deeper TD.

Land surface survey

As a preliminary study, we surveyed the landscape to quantify

surface subsidence created by permafrost thaw and thermo-

karst at the three EML gradient sites in 2004. Fine scale ground

subsidence was estimated using Theodolite Total Station sur-

veying equipment (Leica TPS400, Leica Geosystems, St Gallen,

Switzerland). Transects were established within a 50 m� 50 m

area at each site (Minimal Thaw: 15, Moderate Thaw: 11,

Extensive Thaw: 10) and 600 � 50 points were surveyed with-

in each site. Sampling points along a single transect were not

equally spaced, but were approximately 50 cm apart. Tussocks

were avoided to minimize variations in surface topography

not directly due to thermokarst; all topography measurements

represent the moss/soil surface. The x, y, z (longitude, latitude,

altitude) coordinates were then normalized for hillslope trends

along the z-axis to minimize the effect of hillslope. From this,

we excluded the top 5% of the z-axis measurements as outliers

and obtained means of the remaining highest 10% of the points

per site. All of the z-axis values were normalized according to

the mean of the highest 10% of the values as a measure of

surface subsidence created as a result of thermokarst. This

procedure (hillslope detrending) was done separately for each

site. Therefore, the surfaces with lower relative elevation

largely represent surface subsidence created by permafrost

thaw and thermokarst, whereas the surfaces with higher

relative elevation represent elevated surfaces that did not

subside (Schuur et al., 2009). This relative elevation measure-

ment representing surface subsidence created by permafrost

thaw and thermokarst development will be referred to as ‘MT’

throughout this study.

Measurement grid establishment

In 2006, a subset of the surveyed area was established

as measurement grid points at each EML gradient site

(Fig. 1) to quantify ecosystem variables such as soil tempera-

ture, moisture, TD, and aboveground biomass as well as

ecosystem CO2 fluxes [gross primary production (GPP), eco-

system respiration (Reco), and net ecosystem exchange (NEE)],

and to relate these measurements to MT. These measurements

encompassed an equally spaced 5 m grid within a 50 m� 25 m
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area, so that there were 50 sampling points per Minimal,

Moderate, and Extensive Thaw site (hereafter ‘50 grid points’).

We used differential global positioning systems (GPS) to

determine the location and topographical surface features of

the 50 grid points at the EML gradient sites. We were also

interested in fine scale topographical features, since the differ-

ential GPS method provides precision up to 1 vertical centi-

meter (Little et al., 2003). One GPS unit (Trimble 5400) was

installed at a nearby USGS marker (WGS84, 63153016.5600N,

149114017.9200W) and the other GPS unit was used to measure

the coordinates of interest. Measurements were corrected

relative to the marker to obtain better accuracy. The longitude

and latitude information collected from the differential GPS

and the Theodolite Total Station was converted to the Uni-

versal Transverse Mercator (UTM) coordinate system using

ArcGIS 9.3.

Soil properties

Soil temperature sensors were deployed in a manner that

captured the spatial variability in soil temperature at the 50

grid points within the EML gradient sites. IButton Thermo-

chron temperature loggers (Maxim Inc., Dallas, TX, USA) were

buried at each grid point to a depth of 10 cm and temperature

was logged for 3 days in continuous 30 min intervals. Mean

soil temperatures at 10 cm depth were obtained for the 3 days

of measurements and normalized within a measurement per-

iod. Higher soil temperature estimated from this normaliza-

tion indicated that soil temperature at a particular microsite

was higher than the mean of the 50 grid points. These

observations were used to describe spatial variability of soil

temperature.

Soil TD was measured during the peak of the growing

season (mid-July) in 2006 and 2007 at each of the 50 grid

points. Depth from the surface was recorded using a 1/1600 rod

that was pushed into the ground until it hit the frozen layer.

Soil moisture content was measured by volumetric water

content (VWC) using a Campbell Scientific CS616 water con-

tent reflectometer and a hand-held voltmeter at 10 cm depths

in the soil at each of the 50 grid points. The water content

reflectometer was inserted in soil vertically, thus integrating

near surface soil temperatures of 0–10 cm depth. However, we

calibrated the CS616 specifically for the EML gradient sites at

nearby points using direct sampling of soil water content

made with destructive soil sampling to compare with CS616

values made at those same nearby points (Lee et al., 2010).

Aboveground biomass and vegetation index

Aboveground plant biomass was estimated for the 50 grid

points within the EML gradient sites during the most produc-

tive time of the year (mid-July to early-August) in 2006 using

1 km

Extensive (50-grid points)

Intensive (6-point autochambers)

Moderate
Thaw

Extensive
Thaw Minimal

Thaw

EML

EML sites
N

The EML gradient sites

Denali
NP

Fig. 1 The Eight Mile Lake (EML) gradient sites and the sampling diagram showing extensive (50 grid points equally distributed in

5 m) and intensive measurements (six points for autochamber measurements). The dark spot on the upper left corner is EML, white line

on the bottom is a road, gray areas are tundra vegetation, and dark gray lines where Extensive and Moderate Thaw sites are established

are subsided land surface created as a result of permafrost thaw and thermokarst development. The white dots within each site are

chamber collars of intensive measurements.
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the point-framing method. The point-framing method quanti-

fies aboveground plant biomass as well as species composi-

tion. We used the same method presented in Schuur et al.

(2007) and used allometric equations developed for the EML

gradient sites to estimate total aboveground biomass (g m�2)

of a small quadrat (40 cm� 40 cm) used in the point-framing

method. In this measurement, we only accounted for the fresh

vegetation productivity in that year, excluding dead biomass.

We indirectly assessed vegetation biomass at the 50 grid

points using the NDVI, which was measured at the same time

aboveground biomass was estimated using the point-framing

method. The NDVI is an estimate of greenness and leaf area,

whereas the point-framing method is an indirect estimate of

total aboveground biomass including green leaves and stems.

The NDVI is estimated by the differences between near infra-

red radiation (NIR) and visible wavelength (VIS) [NDVI 5 (-

NIR–VIS)/(NIR 1VIS)]. We used a hand-held ADC camera

(Tetracam Inc., Chatsworth, CA, USA) to take photographs of

the vegetation encountered in point-framing and later used

TETRACAM PIXEL WRENCH2 software (Tetracam Inc., Chatsworth,

CA, USA) to process the images to estimate NDVI.

Ecosystem carbon fluxes

Ecosystem CO2 fluxes were measured to estimate Reco, GPP,

and NEE at the 50 grid points within the EML gradient sites.

NEE was estimated from measurements of CO2 fluxes under

ambient light and absolute dark [NEElight 5 GPP�Reco;

NEEdark 5 (�) Reco]. We used a closed static chamber system

to measure CO2 flux using an infra-red gas analyzer (Li-820,

LI-COR Biosciences, Lincoln, NE, USA), as air circulated

through attached to a 40 cm� 40 cm� 40 cm clear acrylic

chamber. Typically, these chamber measurements are made

via setting the chamber on a collar top, but we used a wind-

shield skirt around the chamber to prevent wind-air mixing

during the flux measurements. These flux measurements were

compared with flux measurements taken from automated

chamber system at the same sites to validate the use of wind-

shield skirt because it was not sealed in tundra; our CO2 flux

measurements fell within the range of flux measured from

automated chamber system at the same time frame. The flow

of air was maintained at 1.5 L min�1. We scrubbed out moist-

ure going into the infra-red gas analyzer using MgClO4 from

the tubing before measuring CO2 fluxes. Therefore, we did not

use any moisture conversion in our flux calculations. Light

intensity was measured as photosynthetically active radiation

(PAR, mmol m�2 s�1) using a LICOR quantum sensor placed

inside the chamber. To take the dark CO2 flux measurement,

we blocked the light by covering the chamber with a reflective

cloth designed to fit the chamber exactly. We used a hyperbolic

equation to describe the relationships between PAR and grow-

ing season GPP and NEE (Thorney & Johnson, 1990). Only first

90 s of CO2 concentrations were taken for the calculations of

CO2 fluxes. For Reco, we used the exponential relationship

developed by Bubier et al. (2003), which was adjusted by Vogel

et al. (2009) for the EML gradient sites to correct growing

season Reco for air temperature at 25 1C. The CO2 flux was

measured three times at the peak of the growing season (late

July) during 2006 and 2007 and the means of the three

measurements were used for further analyses of GPP, Reco,

and NEE.

Spatial autocorrelation

Semivariograms were produced to evaluate spatial depen-

dence and spatial autocorrelation of the variables measured

at each grid within the plots at the three EML gradient sites.

These variables include MT, soil temperature (T), soil moisture

(VWC), TD within the active layer measured in July (TD),

NDVI, and total aboveground biomass (B). We also produced

semivariograms to evaluate spatial dependence and spatial

autocorrelation of ecosystem carbon fluxes (Reco, GPP, and

NEE) at each grid point within the EML gradient sites.

Semivariance is a measure of dissimilarity, which therefore

increases with increasing distance; if the semivariance curve is

flat rather than increasing trend, this indicates insignificant

spatial autocorrelation, or that the data are randomly distrib-

uted in space (Rossi et al., 1992). Semivariance increases over

distance because in nature dissimilarity tends to increase as

the distance between sampled objects increases (Tobler, 1970).

Beyond a certain distance called the range (m), the semivar-

iance tends to flatten out, indicating that the variable is

spatially independent beyond that distance range; at distances

less than the range, the data are considered to be autocorre-

lated. The y-intercept from the model is called Nugget (C0),

which indicates the variability of closely spaced measurements

and is often considered the sampling error. The y-value of

where the semivariogram plateaus is called the Sill (C) and

Spatial dependence (%) was calculated from the following

equation (Jackson & Caldwell, 1993):

Spatial dependence ð%Þ ¼ ðC� C0Þ=C� 100: ð1Þ

Data for spatial autocorrelation were analyzed within each

site. We chose a maximum distance in each analysis of 30 m

and assigned each bin a 5 m width to insure an adequate

number of samples in each bin. Therefore, in each semivario-

gram, there were at least 200 pairs of data points per distance

interval. Semivariograms, ordinary block Kriging, and contour

plots were generated with GS 1 VERSION 9.0 (Gamma Design

Software, MI, USA) using the 10 nearest neighbors and a

distance of 0.5 m between block centers.

Statistical analysis

Statistical analyses were conducted using SAS 9.0 (SAS Institute

Inc., 2002) and R (R Development Core Team, 2005). We used

Pearson’s pairwise correlations to observe correlations be-

tween each pair of ecosystem variables. We constructed mixed

effects models for GPP, Reco, and NEE (response variables)

using multiple ecosystem variables (MT, T, TD, VWC, NDVI,

and B) measured at each grid within the EML gradient sites

(explanatory variables) to find factors that significantly affect

the response variables. The response variables were log-trans-

formed to meet the assumptions of homoscedasticity and

normally distributed residuals (Supporting Information,
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Figure S1). This procedure was done using each EML site

(Minimal, Moderate, and Extensive Thaw) as a ‘block’, as we

knew a priori that spatial patterns by site were significantly

different. By using only ecosystem variables that capture

characteristics in different sites, we intended to construct a

generalized model of carbon fluxes for tundra where thermo-

karst developed over the landscape, without being constrained

by the location of previously defined EML gradient sites. From

this analysis, the mixed-effects models are represented by

Yk ¼ akXk þ ek; ð2Þ

ek � Normal ð0; s2
kKkÞ; ð3Þ

where the subscript k indicates the response variable (i.e. k 5 1,

2, 3 for GPP, Reco, and NEE), X is the matrix of explanatory

variables, a is the vector of parameters, e is the residual error,

and s2 is the variance term for the random effect and error

terms (ek). To find the best fitting models for the response

variables, we used a manual backward stepwise procedure

with MT as a base variable, as we considered MT as the proxy

of change in permafrost thaw and thermokarst development.

In general, mixed effects models do not produce R2; however,

we generated R2 using linear regression models to capture the

predictive capability of the models. For this reason, we are

presenting R2 instead of adjusted R2 in our results.

First, we constructed models without assuming any parti-

cular spatial autocorrelation pattern. Then, we included sev-

eral different covariance models to account for spatial

structure, as reflected by the covariance matrix, l (Legendre

et al., 2002; Littell et al., 2006). The spatial patterns observed in

the semivariograms were used to explicitly declare the struc-

ture of the variance–covariance matrices in each model. We

used Akaike’s Information Criterion (AIC) to assess the ade-

quacy of using these spatial variance-covariance structures in

the model. We decided that the models were different ‘sub-

stantially’ if AIC values decreased by 2. The degrees of free-

dom in the models were adjusted with the Kenward–Rogers

method to appropriately account for the spatial dependencies

in the data. The model with the ‘best-fit’ was chosen as that

model with the least number of variables which were rela-

tively significant in the model. We used w2-test to show good-

ness-of-fit in measured and model predicted annual carbon

fluxes.

Annual ecosystem carbon fluxes model from intensive
measurements

We compared the effectiveness of ecosystem carbon flux

models using ecosystem variables measured both extensively

(50 grid points, few measurement dates) and intensively (six

points, automated chamber semicontinuous measurements;

Vogel et al., 2009; Fig. 1) of ecosystem carbon fluxes (GPP, Reco,

and NEE). Vogel et al. (2009) established six replicate chamber

collars at each of the three EML gradient sites and measured

ecosystem carbon fluxes intensively throughout the growing

season (May–September) from 2004 to 2006 using static cham-

ber and automated chamber systems, simultaneously, to accu-

rately estimate growing season carbon fluxes. Moreover,

multiple measurements of Reco were taken during the winter

using a static chamber system and combined with the growing

season in order to estimate annual carbon fluxes at the EML

gradient sites.

Our goal was to determine whether the ecosystem carbon

flux models we constructed from extensive measurements of

growing season carbon fluxes were similar to those con-

structed with temporally intensive measurements of annual

carbon fluxes. Growing season carbon fluxes are highly corre-

lated to annual carbon fluxes, therefore, we assumed that the

ecosystem variables that explained growing season carbon

fluxes would also explain large variability in annual carbon

fluxes. A mixed effects model was constructed using MT, TD,

and B for intensive measurements of annual carbon fluxes. We

then used the parameters estimated from intensive annual

carbon flux models at the point scale to extrapolate annual

carbon fluxes at the 50 grid points within the EML gradient

sites.

MT was collected using the Theodolite Total Station survey-

ing equipment and normalized with the same method used in

this study. We used the 3-year mean (2004–2006) of TD

measured at the peak of the growing season (mid-July) for

this analysis. Aboveground biomass was estimated using

point-framing method at the peak of the growing season in

2004.

Results

Spatial structures in surface subsidence at the EML
gradient sites

As thermokarst develops, subsided areas become satu-

rated with water, while elevated patches become drier.

The EML gradient sites, previously defined as having

different degrees of permafrost thaw and subsidence,

showed different patterns of surface subsidence (Fig. 2)

at each site. Minimal Thaw showed a weak spatial

dependence (67.1%), or structural variance (see ‘Spatial

autocorrelation’) and minimal variation in surface to-

pography; Moderate Thaw showed a moderate spatial

dependence (82.1%) and patchy distribution of surface

subsidence; and Extensive Thaw showed the most

spatial dependence (99.7%) with a more widespread

surface subsidence throughout the survey area (Sup-

porting Information Table S1).

Correlations and spatial patterns in ecosystem variables
and ecosystem carbon fluxes

Across the EML gradient sites, MT was significantly

correlated at ao0.05 level to four of the five measured

ecosystem variables such as T (Pearson’s correlation

coefficient, r 5�0.2315), VWC (r 5�0.4696), TD

(r 5�0.4887), and NDVI (r 5�0.3070; Table 1). Other

ecosystem variables showed significant but moderate
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correlations with other variables: TD was correlated to T

(r 5 0.3911), VWC (r 5 0.3144), and NDVI (r 5 0.3003),

and B was correlated to T (r 5 0.2158). This indicates

that surface subsidence created by permafrost thaw and

thermokarst development is significantly related to soil

environment and plant biomass, which are likely re-

sponding to this ground subsidence.

Within each plot, more ecosystem variables (MT, TD,

VWC, NDVI) in the Extensive Thaw site showed spatial

dependence (Table 2) and greater range of autocorrela-

tion than those of Moderate (T and TD) and Minimal

Thaw (TD and VWC). Semivariograms estimated for

the remaining ecosystem variables (i.e. MT, T, NDVI,

and B in Minimal Thaw) indicated a lack of significant

autocorrelation (nugget only model), and these data

were assumed to have random spatial distributions.

There was no spatial structure shown in B at any of

the three sites. On the other hand, NDVI showed

moderate spatial dependence at Extensive Thaw (Spa-
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Table 1 Pearson’s pairwise correlation coefficients of the

explanatory variables at the three EML gradient sites com-

bined

MT T VWC TD B NDVI

MT �0.2315 �0.4696 �0.4887 �0.0896 �0.3070

T 0.0067 0.0170 0.3911 0.2158 0.0295

VWC 0.0000 0.8362 0.3144 �0.0770 0.1297

TD 0.0000 0.0000 0.0001 0.0998 0.3003

B 0.2993 0.0080 0.3488 0.2244 0.1339

NDVI 0.0003 0.7213 0.1148 0.0002 0.1036

The bolded values are correlation coefficients and the non-

bolded values are P-values.

MT, surface subsidence measured by relative elevation noted

as microtopography; T, soil temperature at 10 cm; VWC, volu-

metric water content at 10 cm; TD, soil thaw depth measured

in late July; B, aboveground biomass measured by point-

framing method; NDVI, normalized difference vegetation in-

dex; EML, Eight Mile Lake.
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tial dependence 5 29.7%), even though B and NDVI

were significantly correlated to each other. Spatial de-

pendence of the variables ranged widely, from 29.7% to

91.7%. It is important to note here that these analyses

were performed on measurements made at 5 m grid

spacings but the large majority of the observed micro-

topographic autocorrelation in Fig. 2 occurred at a scale

of o5 m (Supporting Information Table S1).

Construction of extensive ecosystem carbon flux models

Summary statistics of extensive growing season carbon

fluxes estimated from the 50 grid points within the EML

gradient sites are provided in Supporting Information

Table S2. Among the measured variables, MT, TD, and B

best explained GPP (AIC 5�164.5; P 5 0.2846,

R2 5 0.2573), MT, TD, and B best explained Reco

(AIC 5�97.0; p 5 0.3892, R2 5 0.2158), and MT and TD

best explained NEE (AIC 5�88.5; P 5 0.0132,

R2 5 0.1225) (Table 3). We then added spatial covariance

structure to the models to observe which spatial covar-

iance structure enhances the models from the best fit

models. For all three extensive ecosystem carbon flux

models (Reco, GPP, and NEE), adding exponential

and power covariance structure to the best fit models

resulted in the lowest AIC values (Table 4), but adding

exponential covariance structure slightly lowered

P-values of explanatory variables in the models.

Annual ecosystem carbon flux models from intensive
measurements

We used the three ecosystem variables (MT, TD, and B;

Table 3) to extrapolate our growing season carbon fluxes

to annual carbon fluxes (Table 5) using data collected

intensively at six points within each of the EML gradi-

ent site by Vogel et al. (2009). In this intensive dataset,

annual GPP was explained by MT, TD, and B

(P 5 0.0217, R2 5 0.7984), annual Reco was explained by

MT, TD, and B (P 5 0.0322, R2 5 0.7646), and annual

NEE was explained by MT, TD, and B (P 5 0.0642,

R2 5 0.2203). Figure 3 shows 1 : 1 fit between measured

and model predicted values of annual GPP, Reco, and

NEE derived from MT, TD, and B from the intensive

measurements. The w2-values of measured and model

predicted annual GPP, Reco, and NEE were 3.59, 3.50,

and 12.48, respectively (F16, 0.05 5 26.30). The goodness-

of-fit test showed that measured and model predicted

values of annual GPP, Reco, and NEE were statistically

not different. MT was not significant in any of the

carbon flux models that included additional variables,

which may be due to the strong correlation shown

between MT and TD (Pearson’s correlation coefficient,

Table 2 Model parameters of the curves fitted through each semivariogram in ecosystem variables

Site Variable Model Nugget Sill

Autocorrelation

distance (m)

Spatial

dependence (%)

Minimal Thaw MT LIN 0.00453 – – –

T LIN 1.668 – – –

TD GAU 13.203 23.814 2.9 44.6

VWC EXP 0.00132 0.005 – 73.5

NDVI LIN 0.00155 – – –

B LIN 26105.7 – – –

Moderate Thaw MT LIN 0.00614 – – –

T GAU 0.191 2.292 5.2 91.7

TD GAU 22.997 41.812 5.2 45.0

VWC LIN 0.00187 – – –

NDVI LIN 0.00728 – – –

B LIN 19144.8 – – –

Extensive Thaw MT EXP 0.00821 0.032 – 74.4

T EXP 1.562 2.357 3.5 33.7

TD GAU 86.427 127.500 4.3 32.2

VWC EXP 0.00164 0.003 39.6 50.2

NDVI EXP 0.00417 0.006 3.4 29.7

B LIN 17290.9 – – –

The nugget (C0) is intercept of graph, sill (C) is semivariance of each graph where it plateaus, range is the distance where the plateau

begins in meters, and spatial dependence [(C�C0)/C� 100] is the ratio of structural to population variance.

MT, surface subsidence measured by relative elevation noted as microtopography; T, soil temperature at 10 cm; TD, soil thaw depth

measured in late July; VWC, volumetric water content at 10 cm; NDVI, normalized difference vegetation index; B, aboveground

biomass measured by point-framing method; EXP, exponential; GAU, Gaussian; LIN, linear.
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r 5�0.8302, Po0.0001); however, MT was correlated to

GPP, Reco, and NEE by itself at P 5 0.0860, 0.0592, and

0.1318, respectively, showing that it is still an important

predictor of ecosystem carbon fluxes. The same group

of variables that were significant predictors in the

annual GPP and Reco models constructed using exten-

sive measurements was significant in these models

(Table 3).

We then extrapolated annual carbon fluxes using MT,

TD, and B from the six-point intensive annual carbon

flux models (Table 6) to 50 grid point area within the

EML gradient sites. Mean annual Reco at Moderate and

Extensive Thaw were significantly smaller (more nega-

tive value, more carbon release to the atmosphere) than

at Minimal Thaw (P 5 0.0006), though Extensive Thaw

was different from Moderate Thaw only at P 5 0.0812.

Mean annual GPP at Moderate and Extensive Thaw

were significantly greater (more positive value, more

carbon uptake to the ecosystem) than at Minimal Thaw

(P 5 0.0043), but mean annual GPP at Moderate and

Extensive Thaw sites were not statistically different.

Mean annual NEE at Moderate and Extensive Thaw

were significantly greater (positive values represent

carbon uptake to the ecosystem and negative values

represent carbon release to the atmosphere) than Mini-

mal Thaw (P 5 0.0076), but Moderate and Extensive

Thaw were not statistically different. There was a sig-

nificant difference (Po0.0001) between modeled annual

NEE estimated from the ecosystem variables, and an-

nual NEE estimated from the difference between mod-

eled annual Reco and annual GPP. When annual NEE

was estimated using the difference between annual Reco

and annual GPP, it was �30.1 � 17.3, 8.1 � 16.5, and

�6.0 � 14.1 g CO2–C m�2 at Minimal, Moderate, and

Extensive Thaw, respectively. This may be due to

the low explanatory power of the annual NEE model

(Table 5), which is typical for NEE measurements, the

difference of two large offsetting fluxes.

The Kriging maps of predicted annual GPP and Reco

for the 50 grid points at the three EML gradient

sites showed spatial patterns on a landscape under-

going permafrost thaw and thermokarst development

(Fig. 4). There was stronger spatial pattern shown in

GPP of Moderate Thaw site and Reco at Extensive Thaw

site. Minimal Thaw did not show substantial spatial

pattern in GPP nor Reco. The spatial patterns shown in

the extrapolated annual GPP and Reco for the 50 grid

Table 3 The carbon flux models constructed using measured ecosystem variables from the EML gradient sites combined

Carbon fluxes Model R2 AIC P-value MT TD B

GPP MT 0.1224 �146.1 0.5940 �0.5090 (o0.0001) – –

MT 1 TD 0.2165 �159.9 0.4691 �0.2606 (0.0485) 0.6072 (0.0001) –

MT 1 B 0.1690 �150.7 0.4300 �0.4764 (0.0001) – 0.2101 (0.0059)

MT 1 TD 1 B 0.2573 �164.5 0.2846 �0.2348 (0.0664) 0.5858 (0.0001) 0.2014 (0.0055)

MT 1 TD 1 B 1 exp – �168.3 0.0309 �0.1833 (0.1933) 0.5314 (0.0006) 0.1749 (0.0135)

Reco MT 0.0956 �82.7 0.3264 �0.5884 (0.0001) – –

MT 1 TD 0.1439 �89.8 0.1749 �0.3486 (0.0348) 0.5425 (0.0041) –

MT 1 B 0.1729 �90.9 0.4910 �0.5420 (0.0003) – 0.3196 (0.0011)

MT 1 TD 1 B 0.2158 �97.0 0.3892 �0.3257 (0.0454) 0.5016 (0.0074) 0.3035 (0.0017)

MT 1 TD 1 B 1 exp – �102.0 0.0244 �0.2443 (0.1272) 0.4624 (0.0091) 0.2394 (0.0082)

NEE MT 0.0806 �84.2 0.0099 �0.4631 (0.0035) – –

MT 1 TD 0.1225 �88.5 0.0132 �0.2839 (0.1001) 0.4779 (0.0202) –

MT 1 TD 1 exp – �94.6 0.0009 �0.1861 (0.3336) 0.5101 (0.0103) –

Values in MT, TD, and B columns are parameter estimates and the values in parentheses are P-values of each variable in the model.

A log transformation of the response variables was used to meet the assumption of normally distributed data.

GPP, gross primary production; Reco, ecosystem respiration; NEE, net ecosystem exchange of CO2.MT, surface subsidence measured

by relative elevation noted as microtopography; TD, soil thaw depth measured in late July; B, aboveground biomass measured by

point-framing method; exp, exponential spatial covariance structure; EML, Eight Mile Lake.

Table 4 The AIC values of the growing season carbon flux

models (GPP, Reco, NEE) with and without spatial covariance

structures

Spatial covariance

structure

AIC values

GPP Reco NEE

None �164.5 �97.0 �88.5

Exponential �168.4 �102.0 �94.6

Spherical �153.5 �91.4 �73.5

Power �168.4 �102.0 �94.6

Gaussian �158.5 �91.0 �82.5

Anisotrophy – �92.6 –

AIC, Akaike’s Information Criterion; GPP, gross primary pro-

duction; Reco, ecosystem respiration; NEE, net ecosystem ex-

change of CO2.
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points were similar to the pattern shown from MT (Fig.

2) at the EML gradient sites.

Discussion

Many ecosystem carbon flux studies have been per-

formed either on a point scale using the static or

automated chamber methods, or on a much larger scale

using the eddy covariance or remote sensing methods.

To estimate carbon fluxes in changing ecosystems, it is

important to capture the underlying principles of the

spatial variability of the fluxes. This can only be at-

tained by a large-scale approach; however, it takes

extensive amount of resources to make observations at

both a large scale and with the detailed temporal cover-

age that is generally obtained by a point scale method.

On the other hand, eddy covariance or remote sensing

methods cannot depict fine scale spatial variation.

Similar to ecosystem carbon flux measurements, mod-

eling ecosystem carbon fluxes that includes precision

and accuracy represented as intensive and extensive

measurements of ecosystem carbon fluxes. In this study,

we attempted to show the balance between intensive

and extensive measurements of ecosystem carbon

fluxes and modeling these at a landscape scale.

In order to effectively extrapolate our point measure-

ments of ecosystem carbon fluxes within the landscape,

we needed to account for the observed spatial patterns

shown in ecosystem variables. The spatial pattern in

surface subsidence was distinct for each of the three

EML gradient sites that corresponded to different

degrees of permafrost thaw and thermokarst develop-

ment (Fig. 2 and Supporting Information Table S1).

The Extensive Thaw site had the greatest number of

Table 5 Annual carbon flux models using same group of ecosystem variables chosen from the plot scale carbon flux models

Carbon fluxes Model R2 AIC P-value MT TD B

Annual GPP MT 0.5030 179.2 0.0592 0.0005 – –

TD 1 B 0.8011 158.0 0.0161 – 0.0484 0.0028

MT 1 TD 1 B 0.7984 140.3 0.0217 0.7300 0.1154 0.0279

Annual Reco MT 0.4505 170.2 0.0860 0.0051 – –

MT 1 TD 0.7051 146.0 0.0260 0.8782 0.0123 –

MT 1 TD 1 B 0.7646 131.5 0.0322 0.7226 0.0790 0.1783

Annual NEE MT 0.1447 163.6 0.1318 0.9873 – –

MT 1 TD 0.1479 148.9 0.0175 0.1752 0.0882 –

MT 1 TD 1 B 0.2203 135.4 0.0642 0.0548 0.0254 0.1261

The P-value column represents P-value of the whole model. MT, T, TD, and B columns represent p-value of the variables in

the model.

GPP, gross primary production; Reco, ecosystem respiration; NEE, net ecosystem exchange of CO2; MT, surface subsidence measured

by relative elevation noted as microtopography; TD, soil thaw depth measured in late July; T, mean growing season soil temperature

monitored from 2004 to 2007 at 10 cm; B, aboveground biomass measured by point-framing method.
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variables containing spatial patterns, indicating

that changes in soil environment are correlated

with the degree of permafrost thaw and thermokarst

development, which supported the assumption that

permafrost thaw and thermokarst development both

influenced the soil environment (Table 1). When ther-

mokarst develops, subsided areas are more likely to

collect snow in the winter (Osterkamp et al., 2000;

Jorgenson et al., 2006). As a result, the snow insulates

the soil and keeps the area warmer during the winter

leaving the areas exposed colder in the winter as wind

redistributes snow across the landscape (Osterkamp,

2007; Osterkamp et al., 2009). Furthermore, during the

summer, warm winter soil has positive feedback on soil

temperatures (Stieglitz et al., 2003). Warm soil tempera-

tures may stimulate microbial decomposition of soil

organic matter and release more nutrients back to soil,

which may stimulate primary production in localized

spots via increased shrub growth (Shaver et al., 2001;

Schuur et al., 2007). Therefore, surface subsidence cre-

ated as a result of permafrost thaw and thermokarst

development alters ecosystem properties and can posi-

tively feed back to more permafrost thaw as a result.

Changes in ecosystem properties created as a result of

permafrost thaw and thermokarst development then

affects ecosystem carbon cycling via altering carbon

uptake represented as plant photosynthesis and carbon

emissions represented as decomposition of organic

matter and plant respiration. Our extensive growing

season carbon flux models (Table 3) showed that pat-

terns in growing season carbon fluxes in upland tundra

were described by three ecosystem variables: surface

subsidence (MT), seasonal TD in the active layer, and

aboveground plant biomass (B). Notably, all of these

ecosystem variables had spatial structure across the

landscape created as a result of permafrost thaw and

thermokarst development; this variation needed to be

taken into account for the models to become significant

(Table 3). As shown in our mixed effects models, using

Table 6 Mean annual GPP, Reco, and NEE in g CO2–C m�2

(Mean � SE) for the EML gradient sites estimated over a larger

scale in space using parameters estimated from the annual

carbon flux models

Minimal

Thaw

Moderate

Thaw

Extensive

Thaw

Annual GPP 349.4 � 17.7 421.5 � 17.0 426.4 � 17.7

Annual Reco �379.5 � 5.7 �413.5 � 7.6 �432.4 � 11.1

Annual NEE �43.4 � 11.8 0.1 � 10.6 �8.8 � 8.7

EML, Eight Mile Lake; GPP, gross primary production; Reco,

ecosystem respiration; NEE, net ecosystem exchange of CO2.
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spatial covariance structure in the models does explain

part of the variance (decreased AIC values more than 2),

but did not significantly enhance the model fit via

increased R2 due to the nature of mixed models. (Refer

to ‘Materials and methods’ section that mixed models

do not produce R2.) Nevertheless, using spatial struc-

ture in ecosystem carbon flux models captured some of

the variability found at the larger scale (Table 3). In

particular, explaining changes in carbon balance across

tundra ecosystems that are thawing appears to require

fine scale (o5 m) measurements in order to extrapolate

across the unmeasured part of the landscape.

Previous studies have explained ecosystem carbon

fluxes using ecosystem measurements in tundra that are

known drivers of biological processes. For example,

ecosystem researchers have observed increased GPP

as a function of increased soil temperature (Starr et al.,

2004; Oberbauer et al., 2007), increased Reco as a function

of increased soil temperature (Shaver et al., 1992; Cha-

pin et al., 2000; Oechel et al., 2000), and increased Reco as

a function of increased soil moisture (Chapin et al., 1988;

Oberbauer et al., 1992; Illeris et al., 2004). Others have

also observed increased GPP and Reco as a function of

increased NDVI (Boelman et al., 2003; La Puma et al.,

2007) or LAI derived from NDVI (Shaver et al., 2007),

differences in GPP and Reco as a function of different

vegetation types (Sullivan et al., 2008), and increased

NEE as a function of increased ALT (Weller et al., 1995).

In this study, we showed the relationship between

ecosystem carbon fluxes and previously identified vari-

ables, and have also identified proxy variables specific

to permafrost landscape (i.e. surface subsidence and

TD) to describe long-term carbon fluxes under perma-

frost thaw. Indeed, these ecosystem variables, along

with aboveground biomass, are better predictors of

long-term carbon fluxes at this site than are other

ecosystem variables such as soil moisture. This does

not imply that the excluded variables are unimportant

in explaining ecosystem carbon fluxes. Rather, it high-

lights the significant correlations that exist between the

omitted variables and the variables included in the

model (Table 1), and suggests that a static variable such

as surface subsidence and TD can represent redistribu-

tion of ecosystem factors such as soil moisture

and temperature in regions where thermokarst has

developed.

Among the ecosystem measurements that explained

ecosystem carbon fluxes in our study, surface subsi-

dence maybe the most notable. Topographic patterns

created by permafrost thaw and thermokarst develop-

ment may not have a direct effect on ecosystem carbon

fluxes; instead have an indirect effect due to factors

such as changes in soil moisture or vegetation driven by

topographic patterns. The relationships between topo-

graphic patterns and carbon emissions have been

shown in various ecosystems (Hanson et al., 1993; Kang

et al., 2003; Epron et al., 2006; Sommerkorn, 2008; Martin

& Bolstad, 2009), but most of which concluded that

changes in topographic features indirectly affect soil

environment (i.e. soil temperature, moisture, bulk den-

sity, root density) and influenced ecosystem carbon

fluxes as a result. In addition, Riveros-Iregui &

McGlynn (2009) have shown that different patterns of

slope in the topography changed patterns of watershed

and soil moisture, which in turn affected ecosystem

carbon fluxes. These results support that topographic

patterns are useful predictors of ecosystem carbon

fluxes because they often represent larger scale in the

landscape covering the entire watershed area (Riveros-

Iregui & McGlynn, 2009). Our results imply that eco-

system carbon fluxes are affected by surface subsidence

created by permafrost thaw and thermokarst develop-

ment not through a direct effect, but indirectly as sur-

face subsidence stimulates changes in ecosystem

processes.

The number of measurements needed to accurately

represent natural phenomena has always been a ques-

tion for scientists because it takes much resources and

time to make observations at both a large scale and with

the detailed temporal coverage. In previous research

(Lee et al., 2010), we showed that 33% of the variability

in soil CO2 production was explained by MT (including

other ecosystem variables, an adjusted R2 5 0.48 was

obtained), which indicates the power of repeated mea-

surements in explaining the variability of ecosystem

carbon fluxes. If the variables were measured repeat-

edly throughout the growing season over several years,

the model R2-value would have been higher than the

current estimates as demonstrated by the intensive site

analysis. Therefore, our results are valuable as is be-

cause our results not only show the extent of spatial

variability in carbon fluxes, but also show that the

variability can be reduced by multiple measurements

of carbon fluxes over time.

Our extensive models may show low R2 (R2o0.30),

but our intensive models show high R2 (R240.90),

which is a direct example of how statistically R2

changes when there are spatially extensive measure-

ments (R2 decreases) and temporally extensive mea-

surements (R2 increases). A recent research conducted

in tundra sites at the north slope of Alaska and Sweden

demonstrated that GPP, Reco, and NEE could be mod-

eled using base Reco measurements, PAR, soil tempera-

ture, and leaf area index with R2 values ranging from

0.62 to 0.98 in tundra ecosystems regardless of the

vegetation type (Shaver et al., 2007). Indeed, the R2

values of our extensive ecosystem carbon flux models

were much lower compared with those derived from
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Shaver et al. (2007). This was because our ecosystem

carbon flux models were derived from measured static

ecosystem variables alone, whereas, Shaver et al. (2007)

used base respiration (a model fitted value) to estimate

ecosystem carbon balance. Moreover, the range of their

measurements was much greater than our measure-

ment range (i.e. NEE in our study ranged from �8

to 0 mmol CO2 m�2 s�1, whereas NEE in Shaver et al.

(2007) ranged from �15 to 8mmol CO2 m�2 s�1, three-

fold greater than our measurement range) because they

took measurements from various tundra sites with very

different vegetation types, which may be one of the

factors in higher R2 during statistical analysis.

The intensive ecosystem carbon flux models pre-

sented in this study show that surface subsidence cre-

ated by permafrost thaw and thermokarst development,

seasonal TD, and aboveground biomass were better

predictors in extrapolating ecosystem carbon fluxes than

other ecosystem variables (Table 4). A similar approach

was used to model CO2 and CH4 emissions in tundra

ecosystem using soil temperature and water table depth

(Bubier et al., 1993; Heikkinen et al., 2002), and driving

variables that have been verified through the use of

gravity spaceborne data (Anthony Bloom et al., 2010).

Additionally, several studies used point measurements

inside the eddy covariance tower footprint or satellite

image to verify the scaling (Oechel et al., 2000; Riveros-

Iregui et al., 2008). The relatively high R2 in our intensive

models show that the environmental variables we used

best captures long term carbon flux that is of interest

rather than short term variability. Indeed, we observed

that the measured annual carbon fluxes and model

predicted annual carbon fluxes were statistically not

different (Fig. 3), giving us confidence that this may also

be extrapolated to a larger tundra landscape where

permafrost is thawing (Fig. 4).

The spatial patterns in predicted ecosystem carbon

fluxes in the 50 grid points within the EML gradient

sites (Fig. 4) were consistent with the trends in ecosys-

tem carbon fluxes in previous studies using intensive

point scale measurements (Schuur et al., 2009; Vogel

et al., 2009). After intensively measuring carbon fluxes

at the EML gradient sites, Vogel et al. (2009) showed that

GPP and Reco increased as permafrost thaw progressed,

but greater increase in Reco at the Extensive Thaw site

made it a carbon source, when Moderate Thaw site was

a carbon sink. The Kriging map of annual carbon fluxes

in plot scale (Fig. 4) indicated the lowest spatial varia-

bility present in annual GPP and annual Reco at Minimal

Thaw. However, there was higher variability in annual

GPP in Moderate Thaw and in annual Reco in Extensive

Thaw.

In summary, we showed that static ecosystem

variables that do not change on daily basis (i.e. surface

subsidence created by thermokarst development, sea-

sonal TD in the active layer, and aboveground biomass)

can be extrapolated as proxy variables to explain long-

term ecosystem carbon fluxes in upland tundra where

permafrost is thawing. These same variables did not

predict nearly as well short-term variation in carbon

fluxes, likely because they were integrative variables

that changed very slowly during the growing season.

Moreover, this study shows the possibilities of scaling

measurements from a small spatial scale and success-

fully extrapolating to a larger area. However, using

spatial structure to determine changes in variables

across the landscape is best with more tightly clustered

measurements. Most of the spatial dependence oc-

curred at scales of o5 m that we detected mainly with

our original ground subsidence survey rather than the

50 m grid. This approach of using slowly changing

relatively static variable as proxy for long-term carbon

fluxes may be useful for extrapolating to larger scales

using remote sensing, aerial photography, or satellite

imagery.
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Additional Supporting Information may be found in the online version of this article:

Figure S1. Summary of response variable (GPP, Reco, and NEE) distribution. The response variables were log-transformed and

normal distribution curve was fit.

Table S1. Model parameters of the sources fitted through each semivariogram in surface subsidence (MT) measured each site in 2005

shown in Figure 2. The sampling area was approximately 50 m� 50 m and 600 � 50 points were sampled.

Table S2. Summary statistics of the explanatory variables used in the growing season carbon flux models for the three EML gradient

sites.
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