
A Cutting Plane Approach for the Multi-Machine

Precedence-Constrained Scheduling Problem

Prahalad Venkateshan∗ Joseph Szmerekovsky† George Vairaktarakis‡

Abstract

A cutting-plane approach is developed for the problem of optimally scheduling jobs with ar-

bitrary precedence constraints on unrelated parallel machines to minimize weighted completion

time. While the single machine version of this problem has attracted much research efforts, en-

abling solving problems with up to 100 jobs, not much has been done on the multiple machines

case. A novel mixed-integer programming model is presented for the problem with multiple

machines. For this model, many classes of valid inequalities that cut off fractional linear pro-

gramming solutions are developed. This leads to an increase of the linear programming lower

bound from 89.3% to 94.6% of the corresponding optimal solution, and a substantial reduction

in the computational time of an optimal branch-and-bound algorithm for this problem. This

enables us to report optimal solutions for problem instances with up to 25 jobs and 5 machines,

which is more than twice the size of problems for which optimal solutions have been reported

in the literature thus far. For a special case of the problem – that of minimizing makespan –

application of our model helps solve 18 of 27 previously unsolved problem instances to optimality.

Keywords/Subject Classification: Unrelated Machine Scheduling; Precedence-Constrained

Scheduling; Optimization; Integer Programming; Valid Inequalities

1 Introduction

We consider the problem of scheduling jobs on unrelated parallel machines to minimize weighted

completion time when the jobs are subject to precedence constraints. This problem is well known in

the literature and is denoted as R‖prec‖
∑

j WjCj using the classic three field notation of Graham

et al. (1979). Since the problem was first introduced, much research has been done on unrelated

machine scheduling and it remains an active area of research to this day. For example, Arroyo

and Leung (2017a), Arroyo and Leung (2017b), Che at al. (2017), Cheng and Huang (2017),

Fanjul-Peyro et al. (2017), Joo and Kim (2017), Shahvari and Logendran (2017), Sitters (2017),

∗Indian Institute of Management, Vastrapur, Ahmedabad - 380015, India.prahalad@iima.ac.in
†College of Business, North Dakota State University, Fargo, ND - 58102, USA. joseph.szmerekovsky@ndsu.edu
‡Corresponding author, Weatherhead School of Management, Case Western Reserve University, Cleveland, OH -

44106, USA. gxv5@case.edu. Ph:216-368-5215

1

and Woo et al. (2017) all represent very recent advances in scheduling unrelated machines. A

survey is provided in Mokotoff (2001). Despite the vast amount of literature on unrelated machine

scheduling, few papers have addressed environments with precedence constraints. Herrmann et al.

(1997) provide heuristics and lower bounds for minimizing the makespan under the special case

where precedence constraints form chains of tasks. Numerical experiments are used to show that

the heuristics are fast and can provide good, sometimes optimal, solutions. Kumar et al. (2009)

also consider a special structure for the precedence constraints; that of treelike precedences. They

develop polylogarithmic approximation algorithms for the makespan and weighted completion time

objectives. Tavakkoli-Moghaddam et al. (2009) appear to be the first to treat the problem with

arbitrary precedence constraints. They consider sequence dependent setup times, release dates,

and due-dates while minimizing the bi-objective for number of tardy jobs and total completion

time. For this complex problem they provide a genetic algorithm and show that it performs well

as compared to solutions obtained by a branch and bound procedure. Liu and Yang (2011) also

consider precedence constraints, but consider only the makespan objective. Their approach is to

use a heuristic – in this case a priority rule based algorithm – which is shown to improve on the

results obtained by Herrmann et al. (1997). Liu (2013) also treats the problem with arbitrary

precedence constraints and the objective of minimizing total tardiness. A hybrid genetic algorithm

is developed which is shown to outperform a conventional genetic algorithm. Afzalirad and Rezaeian

(2016) make use of metaheuristics to minimize the makespan with arbitrary precedence constraints

while considering additional resources, sequence dependent setup times, release dates, and machine

eligibility. They develop both a genetic algorithm and an artificial immune system algorithm for

the problem, showing that the artificial immune system algorithm performs best for large problems.

To the best of our knowledge, Szmerekovsky (2003) is the only other research to consider the

problem of scheduling unrelated machines with arbitrary precedence constraints and the objective

of minimizing weighted completion times. Szmerekovsky (2003) indicates the many special cases of

R‖prec‖
∑

j WjCj that are NP-hard. He also presents heuristics and lower bounds that are shown to

perform reasonably well for small problems. Given that the combination of precedence constraints

and the weighted completion time objective allows for a variety of scheduling environments and

objectives to be modeled (i.e. flowshops, jobshops, assembly lines, project scheduling, makespan,

tardiness, etc.), the problem under consideration is of vast practical interest. Hence, in this work,

we provide an optimal procedure for solving R‖prec‖
∑

j WjCj based on the concept of cutting

planes.

The first use of cutting planes to solve a scheduling problem appears to be Balas (1985) who used

disjunctive programming to explore the facial structure of the scheduling polyhedra for minimizing

the makespan in a job shop environment. Cutting planes have also been used to solve single machine

scheduling problems. Early efforts include Dyer and Wolsey (1990) who developed a procedure for

generating valid inequalities for minimizing the weighted sum of completion times on a single ma-

2

chine with release dates, Queyranne and Wang (1991) who show how to generate valid inequalities

for scheduling on a single machine with series-parallel-type precedence constraints, and Queyranne

(1993) who analyzes the polyhedron defined by vectors of completion times for jobs sequenced on

a single machine with no precedence constraints. The inequalities developed in Queyranne and

Wang (1991) and Queyranne (1993) are not directly useful to problem R‖prec‖
∑

j WjCj since

there is always the possibility of idle time between jobs scheduled on the same machine due to

precedence constraints. Building on these works, Schulz (1995) developed an approximation algo-

rithm for scheduling a single machine with precedence constraints. More recent work includes Šorić

(2000) who uses cutting planes for single machine scheduling with job arrivals and setup times to

minimize average backlog, and de Farias et al. (2010) who provide valid inequalities for a robust

single machine scheduling problem. Mokotoff (2004) develop valid inequalities for parallel machine

scheduling with no precedence constraints and makespan minimization objective. These inequalities

are of type
∑

i sixij + k ≤ y, where y is the makespan and the xij variables indicate assignment of

the ith job to the jth machine. Since y is also minimized in the objective, inequalities of such type

are quite useful. However, such inequalities do not easily carry over to R‖prec‖
∑

j WjCj , where

even on considering the completion time of a final dummy job as the makespan, its weight in the

objective function is 0 since it is a dummy job. As a result, the makespan can be made arbitrarily

large without violating such constraints at no penalty to the objective function. Cutting plane

approaches have also been used for project scheduling (Olagúıel and Goerlich 1993) and flowshop

scheduling (Nishi et al. 2010; Nishi and Hiranaka 2013). Mokotoff and Chrétienne (2002) apply

cutting plane methods to solve problem R‖‖Cmax, which is a special case of the problem considered

in this work. Chen and Powell (1999) develop a column generation-based approach for solving the

parallel machine scheduling problem with independent jobs for various objectives. For the weighted

completion time objective, they exploit the fact that in an optimal solution the jobs on every ma-

chine follow the shortest weighted processing time (SWPT) order (Smith 1956). Unfortunately,

this property does not hold for optimal solutions in the presence of the arbitrary precedence con-

straints considered in our work. It remains an avenue for further research as to how our model can

be specialized to be sufficiently competitive to address problems without precedence constraints in

which the jobs scheduled on a machine will satisfy the SWPT order. While computational success

has been attained in solving problem instances with up to 100 jobs for the single machine version

of the problem (see Potts 1985), similar success has been hard to attain for the multiple machine

version. This could be due to some inherent difficulty with such problems. It is pertinent to note

that the model provided in Potts (1985), for instance, cannot be generalized easily and immediately

to allow for multiple machine scheduling. In particular, equation (3) in Potts (1985) ensures that

two jobs i and j are scheduled on the single machine with either i starting before j or vice-versa.

This simple property does not hold for the case of multiple machines since both i and j can start

simultaneously on different machines.

3

There have been few compact mixed-integer programming (MIP) models attempting to solve

problems with unrelated machines and arbitrary precedence constraints. However, none of these

models address the most general weighted completion time objective. Coll et al. (2006) apply

cutting plane methods to solve problem R‖prec‖Cmax, which is also a special case of our problem.

The authors report lower bounds on a large number of unsolved problem instances in the literature.

Hassan et al. (2016) also consider the problem R‖prec‖Cmax. The latter two references make use

of variable definitions that are novel and it remains an avenue of further investigation if and how

the inequalities derived by those authors are extendable to the model developed in our work.

Nonetheless, using our model, in Section 5, we are able to report, to the best of our knowledge, the

first optimal results for many of the unsolved instances in Coll et al. (2006). Tavakkoli-Moghaddam

et al. (2009) provide a compact MIP formulation for the bi-objective optimization problem of

minimizing the number of tardy jobs and the total completion time of jobs. They report solving

problems with up to 10 jobs and 2 machines optimally within two hours of CPU time using an off-

the-shelf MIP solver LINGO. Liu (2013) provides a MIP formulation for minimizing total tardiness.

The problem is solved optimally by the CPLEX MIP solver for instances up to 11 jobs and 2

machines. Furthermore, the MIP models in Tavakkoli-Moghaddam et al. (2009) and Liu (2013)

are constrained, requiring that each machine be assigned at least one job and that the number of

machines be no greater than the number of jobs. Afzalirad and Rezaeian (2016) provide a MIP

model that is not so constrained. However, their model is integer time-indexed making the model

unusable for non-integral processing times and in their model they minimize the makespan. Using

the LINGO MIP solver, the authors report optimal solutions on problems with up to 6 jobs and

3 machines. The MIP formulation developed in this article is applicable to arbitrary non-integer

processing times. We develop valid inequalities and compare the quality of the solutions and the

corresponding CPU requirements by directly solving the problem using a state-of-the-art off-the-

shelf mixed-integer programming solver (CPLEX). Our results show that our procedure performs

significantly better than CPLEX and is capable of solving medium sized problems (up to 25 jobs and

3 machines) to optimality within two hours of CPU time. The remainder of the paper is organized

as follows. In Section 2 we formally define the problem and provide our model. In Section 3 we

identify new valid inequalities for the model. In Section 4 we detail our computational solution

approach. In Section 5, we report our computational experience on using the model. In Section 6

we summarize our conclusions and provide directions for future research.

2 Model

The following notation is used throughout the paper:

Parameters

N : set of N jobs, 1 through N

4

h, i, j, i
′
, j
′
: indices for jobs

G(V,E): directed acyclic precedence graph (DAG)

K: set of K machines

k, k1, k2: indices for machines

Bk
h: 1 if h can be processed on k; 0 otherwise

pkh: processing time of h on k, assumed positive and integer (the model developed in this work is

applicable even if the processing times are non-integral)

N : N ∪{0, N + 1}, where 0 (N + 1) is a dummy job that immediately precedes (succeeds) all jobs

in N with 0 processing time on all machines

wi: weight of i, assumed non-negative. Also, w0 = wN+1 := 0.

If (i, j) ∈ E then i immediately precedes j, and j immediately succeeds i. Job j can start only

after the completion of i. If there is a directed path from h to i, then h precedes i, and i succeeds

h. If neither i precedes j, nor j precedes i, then i and j are said to be independent.

Decision Variables

xkij : 1 if j is scheduled immediately after i and both are jobs scheduled on k; 0 otherwise

Ci: completion time of i

V k
ij : this equals Cix

k
ij . Two inequalities, (5) and (6), in model [MIP] linearize this nonlinear

relationship.

Using this notation, the model [MIP] is now presented.

5

[MIP] Min
N∑
i=1

wiCi (1)

s. t.

K∑
k=1

N∑
i=0
i 6=h

Bk
hx

k
ih = 1 ∀h ∈ N (2)

N∑
j=1

xk0j ≤ 1 ∀k ∈ K (3)

N∑
i=0
i 6=h

xkih =
N+1∑
i=1
i 6=h

xkhi ∀k ∈ K, ∀h ∈ N (4)

V k
ih ≤Mxkih ∀k ∈ K, ∀i ∈ N , ∀h ∈ N , i 6= h (5)

V k
ih ≥ Ci −M [1− xkih] ∀k ∈ K, ∀i ∈ N , ∀h ∈ N , i 6= h (6)

Ch −
K∑
k=1

{
pkhx

k
0h +

N∑
i=1
i 6=h

V k
ih +

N∑
i=1
i 6=h

pkhx
k
ih

}
≥ 0 ∀h ∈ N (7)

Ch − Ci −
N∑

i
′
=0

i′ 6=h

K∑
k=1

Bk
hp

k
hx

k
i′h
≥ 0 ∀ (i, h) ∈ E (8)

xkij ∈ {0, 1} ∀k ∈ K, ∀i ∈ N ,∀j ∈ N

V k
ij ≥ 0 ∀k ∈ K,∀i ∈ N ,∀j ∈ N

Ci ≥ 0 ∀i ∈ N

Objective function (1) minimizes the total weighted completion time. Equality (2) ensures that

each job is assigned on exactly one machine. Inequality (3) ensures that at most one job is scheduled

to start on a machine. Equation (4) can be thought of as a flow balance constraint which ensures for

every machine-job pair that the flow into the job is equal to the flow from the job. Inequalities (5),

(6) and the fact that all weights wi, ∀i ∈ N are non-negative, ensure that there exists an optimal

solution in which V k
ij = Cix

k
ij . Note that this equality is nonlinear while inequalities (5) and (6)

help linearize it. The value of M used in these inequalities is derived in Proposition 1. Using V k
ih,

inequality (7) ensures that Ch is no less than pkh if it starts first on machine k, or no less than

pkh + Ci if it is scheduled to follow job i on machine k.

Values that are derived based on the parameters and the values of decision variables are now

listed. Some of these are constant for a given problem instance while others change due to the

decision variables they depend on.

Derived Values

M : an upper bound on the completion time of any job

6

Pmax
i : maximum processing time of i amongst all machines it can be processed on; i.e., Pmax

i =

maxk∈K,Bk
i =1 p

k
i

Pmin
i : minimum processing time of i amongst all machines it can be processed on; i.e., Pmin

i =

mink∈K,Bk
i =1 p

k
i

MinCT k(i): a lower bound on the completion time of i if it is processed on k

MinCT (i): a lower bound on the completion time of i

MinST (i): a lower bound on the starting time of i

MinCT k(i, j): a lower bound on the completion time of j if it is processed on k immedi-

ately after k completes processing i. One possible way to compute this is MinCT k(i, j) =

Max{MinCT k(j),MinCT k(i) + pkj }.

Si: starting time of i. It is equal to Ci −
∑
k∈K

N∑
h=0
h6=i

pki x
k
hi. Note that this reflects non-preemptive job

processing.

Pred(i): set of jobs in G that precede i

Level(i): level of i ∈ N in G. Computed as max
h∈Pred(i)

Level(h) + 1. Level(0) = 0.

Proposition 1 helps derive one possible value for M . Note that since G is a DAG, a topological

ordering can be obtained. As a result, processing the nodes in ascending order implies that we

always process a predecessor before a successor. Using this fact, the procedure to compute the

other derived values is now outlined.

procedure Computing MinCT ()

Step 0: Set MinCT (h) = 0, ∀h ∈ N .

Step 1: For each i chosen from N in ascending order, let predctime = MinCT (i).

Step 1.1: For each j ∈ N such that (i, j) ∈ E, set MinCT (j) =

max{MinCT (j), predctime+ Pmin
j }.

procedure Computing MinCT k() and MinST ()

Step 1: For each i chosen from N in ascending order, let maxpredctime =

max
h∈Pred(i)

MinCT (h). This is the maximum amongst all of i’s predecessors’ MinCT ().

Step 1.1: For each machine, k, set MinCT k(i) = maxpredctime+ pki .

Step 1.2:After Step 1.1 is completed for all machines k, set MinST (i) = min
k∈K

[MinCT k(i)−

pki]

7

Observe that in Step 1.2 of the procedure to compute MinCT k() and MinST (), model [MIP]

can itself be used to compute MinST (i) exactly. Disregarding jobs that are independent of i

and jobs that succeed i, the objective can be changed to minimization of Si. Doing so may

increase the value such that it is greater than maxpredctime. In our computational tests, we

have calculated exactly MinST (i) values for jobs up to level 6 in the precedence diagram. Doing

so was not computationally expensive and the total reported times include this computation. The

following iterative mechanism is then used to propagate the improved bound in either of MinCT (),

MinCT k() or MinST () amongst all three. Note that MinCT k(i) ≥MinST (i) + pki , MinCT (i) =

min
k∈K

MinCT k(i) and MinCT k(i) = max
h∈Pred(i)

MinCT (h) + pki . These relationships are iteratively

made to hold. This iterative procedure is convergent since N is a finite set and pki ’s are assumed

positive.

3 New Valid Inequalities for R‖prec‖
∑

j WjCj

In this section, we discuss four classes of inequalities which proved most effective in our compu-

tational experiments. Nine other additional classes of inequalities that play an indirect role in

improving convergence of our optimization procedure are specified in Appendix A. First, we derive

a valid upper bound, M , for the completion time of any job.

Proposition 1. There exists an optimal solution in which the maximum completion time of any

job is M =
N∑
i=1

Pmax
i .

Proof. Since wi ≥ 0 for all i ∈ N there exists an optimal schedule where each job starts at the

earliest possible start time, i.e., a non-delay schedule, say S. Consider an arbitrary topological

order of activities in G(V,E), say T = {i1, i2, . . . , iN}, and suppose that jobs are processed in the

this order, one after the other, on a processor k such that Bk
ir

= 1 for r = 1, 2, . . . , N . Clearly,

the makespan of the resulting schedule, say ST , is M =
N∑
i=1

Pmax
i which does not depend on the

topological order T . Hence, M provides an upper bound for every job, and any given topological

order. Moreover, observe that ST is not necessarily a non-delay schedule and hence M provides an

upper bound for the completion time of any job in S. This completes the proof of the proposition.

The aforementioned inequalities are presented next.

Inequality class I

Given j, let set R = {(k, i) : i does not succeed j, and δkij = MinCT k(i) + pkj −MinCT (j) >

0)}. Then, the following inequality is valid.

8

Cj ≥MinCT (j) +
∑

(k,i)∈R

δkijx
k
ij

The validity of the inequality follows from the fact that if j is scheduled to start immediately after

i on k, its completion time cannot be less than MinCT k(i) + pkj .

Inequality class II

Given two independent jobs, i and j, in N , such that they immediately succeed h. Let sum

denote a lower bound on (Ci − Ch) + (Cj − Ch). To compute sum, first, let sum = ∞. Choose

ordered machine pair, (k1, k2), k1 ∈ K, k2 ∈ K, not necessarily distinct. If k1 = k2 = k(say),

perform update sum = Min{sum, 2×Min{pki , pkj }+Max{pki , pkj }}. This corresponds to the case

where i and j are scheduled on machine k. If k1 6= k2, perform update sum = Min{sum, pk1i +pk2j }.
This corresponds to the case where i is scheduled on k1 and j on k2. Iterate over all such pairs

(k1, k2). Then, the validity of the following inequality follows from the definition of sum:

Ci + Cj − 2Ch ≥ sum

Inequality class III

Consider i
′ ∈ N and let an immediate predecessor in G be j ∈ N . Then, when MinCT k(i, j) >

MinST (i
′
) we have

xkij ≤
Si′ −MinST (i

′
)

MinCT k(i, j)−MinST (i′)

Note that Si′ ≥ MinST (i
′
) and hence the right-hand side can never be negative. If xkij = 1, then

Cj ≥MinCT k(i, j) and since Si′ ≥ Cj for (j, i
′
) ∈ E, we have Si′ −MinST (i

′
) ≥MinCT k(i, j)−

MinST (i
′
). Therefore, the right-hand side is greater than or equal to 1. This proves the validity

of the inequality.

Inequality class IV

Given jobs i and j, in N , and machine k, the following inequality holds:

MinCT k(i)xkij + xkji −
N+1∑

i′=1,i′ 6=j

xk
ii′
≤ V k

ij

This is because V k
ij = Cix

k
ij , and by definition, MinCT k(i)xkij ≤ Cix

k
ij . If xkij = 1, then xkji =

N+1∑
i′=1,i′ 6=j

xk
ii′

= 0. If xkji = 1 instead, then xkji −
N+1∑

i′=1,i′ 6=j

xk
ii′

= xkij = 0. In all cases, the inequality

holds.

9

4 Solution Approach

The number of inequalities described in Section 3 and in Appendix A is prohibitively large for

apriori inclusion into formulation [MIP]. Instead, we attempt to solve problem [MIP] using the

following method:

First, we begin by solving its linear programming relaxation, say LP. Let us define

LB0: the objective function value of this LP solution.

If the solution obtained has integral values for {xkij}, we are done having found the optimal solution

to problem [MIP]. Otherwise, the values obtained by the incumbent LP solution may violate one

or more of the 13 inequality classes (four classes discussed earlier, plus nine additional classes

discussed in Appendix A). Such violated inequalities are identified efficiently and stored in a list

for easy access. This is accomplished by solving a separation subproblem for each inequality class.

In principle, the idea behind the separation subproblem is to evaluate the left-hand side (lhs) of

inequalities and compare it to the right-hand side (rhs). If the inequality class can be represented

as lhs ≤ rhs (e.g., class III and class IV) a violation by a fractional solution occurs if lhs > rhs,

with violation amount lhs− rhs. If the inequality class can be represented as lhs ≥ rhs (e.g., class

I and class II) a violation by a fractional solution occurs if lhs < rhs, with amount of violation

equal to rhs − lhs. To make this identification process more efficient, as a preprocessing step,

all the constant derived values are stored in appropriate data structures; multidimensional arrays

proved sufficient for this purpose. The separation routine then loops through all jobs and machines

calculating lhs and rhs based on the incumbent LP solution {xkij}. In all of our computational tests,

the preprocessing time spent on separation routines and the actual separation of inequalities were

completed within 5 seconds on every problem instance and for this reason we do not report separate

CPU times for these routines. These times are included in the total reported computational times.

The process described above iterates between LP re-optimization and finding new violations by

solving the separation subproblem until all four classes of inequalities presented above as well as

those in Appendix A are satisfied. Let us define

LB1: the objective function value of the LP relaxation for which all valid inequalities presented

are satisfied.

When all valid inequalities are satisfied for the incumbent solution {xkij}, the incumbent LP

includes all the inequalities that were found to be violated in previous iterations. This expanded

LP formulation is submitted to an off-the-shelf MIP solver (CPLEX, in our case) for solving after

replacing the constraints xkij ≥ 0 by xkij ∈ {0, 1} for all i, j, k.

The basic framework presented thus far was enhanced in several ways for greater computational

efficiency. Whenever a violated inequality with violation of 0.5 or greater is found, the separation

10

procedure for that inequality class is terminated. Until this threshold is met, violated inequalities

with increasing amounts of violation are stored. That is, if the first stored inequality has a violation

of 0.2, the next violated inequality is stored only if its violation exceeds 0.2. The most violated

inequality so found is added to the LP and the LP is re-optimized. Then, the stored inequalities

from the previous iteration are checked so as to identify a violation using the new incumbent LP

solution. If one exists, the most violated inequality is added to LP which is then re-optimized.

Thus, the separation subproblem need not be explicitly solved as long as previously identified in-

equalities continue to be violated by the incumbent LP solution. If none of the previously identified

inequalities is violated, the separation subproblem is re-solved. Finally, we should mention that

the threshold value of 0.5 was selected by trial and error; it seems to be a good balance between

the size of the list of violated inequalities, and the number of times this list is refilled with newly

violated inequalities.

To evaluate the relative contribution of the various valid inequalities presented in this article

we define the following:

Z∗: the optimal value for problem [MIP],

lb0 := LB0
Z∗ ,

lb1 := LB1
Z∗ .

Evidently, lb1 − lb0 reflects the effectiveness of our valid inequalities as a mechanism for improving

the lower bound for Z∗, above and beyond the value produced by the straightforward LP relaxation

of [MIP]. In particular, the computational experiments discussed in detail in the following section,

demonstrate that for 25-job, 5-machine problem instances

• Class I of inequalities by themselves improve lb0 = 92.8% to lb1 = 97%,

• Class II of inequalities by themselves improve lb0 = 92.8% to lb1 = 94%,

• Class III of inequalities by themselves improve lb0 = 92.8% to lb1 = 93.1%,

• Class IV of inequalities by themselves improve lb0 = 92.8% to lb1 = 93%.

We proceed with detailed computational experiments in the next section.

5 Computational Tests

In this section, results from computational tests are reported. These were carried out on an Intel i5

processor with clockspeed 3.2 GHz and 8 GB RAM. CPLEX 12.7 was used as the LP/MIP solver.

The methodology was tested on different sets of problem classes with varying characteristics – a 25-

job, 5-machine set, and a 20-job, 3-machine set. The project scheduling problem generation method

11

PSPLIB (Kolisch and Sprecher 1997) was used to generate the precedence graph with a project

complexity factor of 1.25 and 2.5. Project complexity is a measure of the average number of arcs

leaving a job in the precedence graph. Thus, the methodology was tested on four different sets of

problem classes. Each set comprised of 10 different problem instances. Evidently, this construction

method used allows for redundant edges. For instance, if (h, i), (i, j) ∈ E, (h, j) is redundant. As a

result, a better measure of project complexity is the graph density which is calculated as the ratio

of the number of non-redundant arcs in G to the total number of arcs possible in G; i.e.
(|V |

2

)
. The

average graph density was 9.5% for the 25-job, 5-machine set with complexity factor 1.25, 11.6%

for the 20-job, 3-machine set with complexity factor of 1.25, 17.5% for the 25-job 5-machine set

with complexity factor of 2.5, and 18.7% for the 20-job, 3-machine set with complexity factor of

2.5. The weights and processing time of a job on a machine are randomly generated integers in

the range [1,10]. CPLEX-based implementations of branch-and-cut allow the addition of violated

cuts at nodes other than the root node. However, application of branch-and-cut for our problem

did not lead to improvement in the computational time. The tradeoff is between the size of the

branch-and-bound tree and the LP-reoptimization time within each node. As more cuts are added

within the tree, the problem size increases dynamically leading to greater LP-reoptimization time.

However, this has the potential of reducing the total tree size. Three different implementation

versions were compared: (1)adding violated inequalities only at the root node, (2)adding violated

inequalities at all nodes at a depth of 10 or less in the tree, and (3)adding violated inequalities at

all nodes in the tree. On one set of 10 problem instances (see Table 3), version (1) required an

average total computational time of 37 seconds per problem and an average tree size of 6924 nodes

per problem. Version (2) required time of 101 seconds and 1864 nodes. Version (3) required 170

seconds and 1152 nodes. As a result, Version (1), in which violated inequalities are only added

at the root node, was chosen for further computational tests. For each problem instance reported

in this section, a two-hour time limit was provided. All problem instances on which results are

reported in this work are available for download from the online supplement.

5.1 Value of Additional Inequalities

A commonly encountered phenomenon in cutting plane approaches to different mixed-integer pro-

gramming problems is the “snowballing effect” (e.g., see Agarwal 2018). For a given fractional

solution {xkij}, no violation may occur of a particular inequality class. However, when a new in-

equality class is added, the new fractional solution may violate a large number of inequalities of

classes previously considered. This is experienced in our cutting plane approach as well. It is

also observed that, the greater the number of inequalities added to [MIP], the less the resulting

computational time to solve the problem; similar experience has been reported in Correia et al.

(2012), among others. This is demonstrated on all problem classes. Initially, each of the different

12

inequality classes (the four described in Section 3 and the nine in Appendix A) was individually

and separately added to LP. As indicated in Section 3, only the four inequalities described in that

section led to an improvement in lb1 over lb0. Amongst these inequalities, class I led to the greatest

increase in lb1. Table 1 compares the impact of adding all violated inequalities as opposed to just

class I of inequalities. This is done separately for each of the 10 problem instances and the average

values across these 10 instances are reported in Table 1.

Table 1: Effect of additional inequalities on different problem classes
Problem Method Avg. Avg. No. Avg. Time Avg. No.

Class Used lb1(%) Nodes (in secs.) Inequalities

25 Jobs, 5 Machines Only Class I 97 24,210 132 20

1.25 Complexity All Inequalities 97.1 17,905 88 216

25 Jobs, 5 Machines Only Class I 96.5 10,671 74 35

2.5 Complexity All Inequalities 97.2 6924 37 208

20 Jobs, 3 Machines Only Class I 91.5 589,839 2271 32

1.25 Complexity All Inequalities 92.3 469,575 1609 195

20 Jobs, 3 Machines Only Class I 90.9 655,616 2070 32

2.5 Complexity All Inequalities 91.8 226,525 352 204

Evidently, a significant number of violated inequalities come from the 12 classes other than

class I of inequalities; on average 216-20=196 versus 20, respectively, for the 25-jobs, 5-machines,

1.25-complexity case, for instance. It was also observed that the number of violated inequalities

in the above table corresponding to the method used of adding all inequalities classes is larger

compared to only considering 2 classes of inequalities simultaneously; class I and any one of the

remaining 12 classes. As we saw in the previous section, the separation of the total of 13 classes

of valid inequalities is not computationally expensive while considering multiple classes helps us

identify many more violations. For these reasons, in all subsequent computational tests we add

violated inequalities from all 13 classes.

It is now time to discuss the merits of the valid inequalities included in Appendix A. While these

nine inequality classes by themselves do not lead to a significant improvement in lb1, their inclusion

to the LP nonetheless perturbs the LP solution {xkij} in a material way so as to significantly affect

the CPU time expended by CPLEX. Given a fractional solution {xkij}, the CPLEX MIP solver

employs a branch-and-bound algorithm in its search for an optimal integral solution {xkij}. The

number of nodes in this branch-and-bound tree as well as the resulting CPU times are reported in

Table 1. Evidently, the addition of the inequalities in Appendix A reduces the average size of the

branch-and-bound tree from 24,210 nodes to 17,905, and the corresponding CPU time from 132

seconds to 88 seconds on average; a 33% improvement for the 25-jobs, 5-machines, 1.25-complexity

case, for instance. (Such improvements can be seen for other problem classes as well.) This is

despite the fact that the associated lb1 values are quite similar (97% vs. 97.1%) using four versus

all 13 classes of inequalities. This indicates that it may be possible to obtain further computational

13

efficiencies by discovering new classes of valid inequalities.

5.2 Comparison with CPLEX

In this section, the cutting plane approach is compared against the only other exact alternative

approach available; namely, simply submitting formulation [MIP] to an off-the-shelf MIP solver.

Tables 2, 3, 4 and 5 report on the computational experience. Different CPLEX settings were

tried in an attempt to improve computing times. This included an emphasis within branch and

bound on lower bound improvement (MIPEMPHASIS BESTBOUND) since as will be seen shortly,

improving the lower bound within the tree is the primary challenge in solving larger problem

instances. Another attempt was made to generate cuts more aggressively than the default setting.

Yet, the overall performance was worse off in all cases. As a result, default CPLEX settings were

used.

Table 2: Comparison with CPLEX Solver for 25-job, 5-machine, 1.25 complexity instances
Instance lb0 CPLEX Solver Cutting Plane Approach

(in %) Nodes Time lb1 Nodes Time Violated

(in secs) (in %) (in secs) Inequalities

1 92.1 1,459,998 72001 97.5 2604 20 240

2 97 62,867 134 99.3 1405 11 160

3 95.4 332,833 950 98.9 301 6 170

4 94 545,685 2333 97.3 2049 14 134

5 96.7 2,015,597 3644 99.7 44 6 230

6 94.2 2,252,997 72002 96.7 12,219 61 326

7 94.6 1,307,049 3515 97.8 4238 20 194

8 93.2 520,021 1150 98.1 825 10 197

9 83.4 1,833,002 72003 91 62,898 278 269

10 88.1 837,898 72004 95 92,467 457 242

Average 92.8 1,116,795 4053 97.1 17,905 88 216

1Gap at termination: 3.86%, Unexplored nodes: 1,120,165

2Gap at termination: 0.4%, Unexplored nodes: 191,401

3Gap at termination: 7.1%, Unexplored nodes: 1,470,683

4Gap at termination: 8.2%, Unexplored nodes: 711,409

14

Table 3: Comparison with CPLEX Solver for 25-job, 5-machine, 2.5 complexity instances
Instance lb0 CPLEX Solver Cutting Plane Approach

(in %) Nodes Time lb1 Nodes Time Violated

(in secs) (in %) (in secs) Inequalities

1 87.7 1,844,400 72001 94.1 54,760 237 221

2 94 17,819 50 99.4 9 5 215

3 94.1 7487 46 98.1 14 4 213

4 96.9 58,654 120 98 224 6 153

5 93 526,751 1891 95.7 4392 33 308

6 98.9 302,857 690 99.7 229 9 186

7 90.1 313,842 835 95.2 1748 26 225

8 97.9 24,966 60 99.8 87 6 192

9 91.2 834,595 1503 95.3 5598 41 236

10 93.5 84,075 226 97 2177 10 133

Average 93.7 401,545 1262 97.2 6924 37 208

1Gap at termination: 6.86%, Unexplored nodes: 1,505,112

Table 4: Comparison with CPLEX Solver for 20-job, 3-machine, 1.25 complexity instances
Instance lb0 CPLEX Solver Cutting Plane Approach

(in %) Nodes Time lb1 Nodes Time Violated

(in secs) (in %) (in secs) Inequalities

1 83 749,400 72001 91.4 526,417 739 172

2 78.9∗ 2,294,676 72002 87∗ 1,031,913 72006 235

3 84.8 4,118,297 72003 91.1 531,855 1572 185

4 84.2 3,387,973 3021 92.6 121,403 137 193

5 89.9 758,370 72004 94.1 16,376 25 222

6 86.2 3,699,756 3042 94.3 17,715 35 221

7 93.5 587,841 376 97.4 11,916 16 159

8 80.1 6,170,200 72005 89 613,135 1520 213

9 81.8 5,304,857 4187 90 1,751,512 4753 169

10 91.4 577,261 331 96.9 76,544 96 178

Average 85.3 2,764,863 4696 92.3 469,575 1609 195

1Gap at termination: 7.8%, Unexplored nodes: 640,580

2Gap at termination: 10.1%, Unexplored nodes: 1,847,686

3Gap at termination: 1.6%, Unexplored nodes: 852,439

4Gap at termination: 6.2%, Unexplored nodes: 591,337

5Gap at termination: 7.9%, Unexplored nodes: 4,044,403

6Gap at termination: 3.5%, Unexplored nodes: 547,075

∗Best estimate after 7200 seconds since this problem was not solved to optimality

15

Table 5: Comparison with CPLEX Solver for 20-job, 3-machine, 2.5 complexity instances
Instance lb0 CPLEX Solver Cutting Plane Approach

(in %) Nodes Time lb1 Nodes Time Violated

(in secs) (in %) (in secs) Inequalities

1 81.5 636,799 72001 89 614,848 1245 194

2 88.6 136,525 76 93.5 38,739 40 216

3 86 440,168 1596 92.7 27,072 45 195

4 85.9 964,593 4346 91.5 14,370 26 189

5 90.4 903,439 72002 93 34,849 62 283

6 85 5,998,429 72003 93 133,212 186 188

7 77.1 3,094,670 3467 86.8 1,252,610 1694 177

8 90 716,628 72004 95.6 50,388 60 159

9 85.6 512,804 72005 91.1 56,086 87 192

10 87.7 516,792 386 92.5 43,081 79 249

Average 85.7 1,392,084 4587 91.8 226,525 352 204

1Gap at termination: 6.9%, Unexplored nodes: 491,364

2Gap at termination: 2.5%, Unexplored nodes: 404,896

3Gap at termination: 8.1%, Unexplored nodes: 4,405,867

4Gap at termination: 1.6%, Unexplored nodes: 295,951

5Gap at termination: 6.2%, Unexplored nodes: 383,864

From these tables we observe that the 2-hour time limit is more than sufficient for our cutting

plane approach in 39 of the 40 problem instances generated. In contrast, without the benefit of our

procedures the CPLEX solver encounters significant difficulty in solving the same problems. Using

the CPLEX solver, 15 out of the 40 problems tested do not generate an optimal solution within

2 hours. The average computing times are smaller for 5-machine instances than for 3-machine

instances. A partial explanation for this behavior is that the gaps 100% − lb0 and 100% − lb1 are

much greater for 3-machine problems than for 5-machine instances indicating higher integrality

gap that has to be closed by the MIP solver. For 20-job, 3-machine instances the inequalities

help improve the lower bound from 85.3% to 92.3% of Z∗ when project complexity is 1.25, and

from 85.7% to 91.8% of Z∗ when project complexity is 2.5. In nearly all cases, and with both the

CPLEX and to a lesser extent our cutting plane approach, the optimal solution is discovered very

early in the branching process. The majority of the time is spent in validating the optimality of the

incumbent solution. Hence, the improvement in the lower bound from lb0 to lb1 is highly beneficial

to the solution process. Also, this suggests that our cutting plane approach with a tight CPU time

limit offers a good heuristic alternative for solving [MIP].

Having established the superiority of the cutting plane method for the four problem sizes con-

sidered until now, in what follows we explore the boundary of problem sizes that can be solved in

reasonable time (2 hours in our experiments) by CPLEX and our cutting plane method. In partic-

ular, we test the two approaches on 25-job, 3-machine instances with project complexity 1.25, and

on 30-job, 5-machine instances with complexity 1.25.

16

Table 6: Comparison with CPLEX Solver for 25-job, 3-machine, 1.25 complexity instances
Instance CPLEX Solver Cutting Plane Approach

Gap at Unexplored Nodes Gap at Unexplored Nodes Violated

termination (in %) termination (in %) Inequalities

1 18.6 2,917,743 8.4 476,106 321

2 12.3 3,567,369 5.8 558,080 225

3 17.1 2,479,502 9.5 796,365 291

4 18.7 1,085,191 11.9 921,964 248

5 7.7 3,223,477 4.5 524,606 342

6 19.4 562,668 14.3 509,451 309

7 7.6 2,418,236 3.0 432,269 299

8 17.3 1,631,132 9.4 955,860 269

9 23.4 1,557,876 14.6 408,777 278

10 5.3 2,131,160 0.0 0 436

Average 14.7 2,157,435 8.1 558,348 302

Table 7: Comparison with CPLEX Solver for 30-job, 5-machine, 1.25 complexity instances
Instance CPLEX Solver Cutting Plane Approach

Gap at Unexplored Nodes Gap at Unexplored Nodes Violated

termination (in %) termination (in %) Inequalities

1 9.3 841,735 5.5 128,900 305

2 3.5 351,366 0.0 0 308

3 4.3 329,940 0.0 0 247

4 8.3 670,921 2.0 363,560 274

5 6.9 318,924 0.0 0 293

6 1.2 411,705 0.0 0 278

7 4.8 457,872 0.0 0 363

8 8.5 358,962 0.0 0 337

9 19.9 240,692 6.6 201,161 301

10 10.7 261,801 0.6 114,354 281

Average 7.8 424,392 1.5 80,798 299

Tables 6 and 7 show the gap at termination and the number of unexplored nodes at the end

of the two-hour time limit. For problem instances with 25 jobs and 3 machines just one instance

(instance 10) was optimally solved by the cutting plane approach (in 3986 seconds) within the

2-hour limit, indicating limited effectiveness. For problem instances with 30 jobs and 5 machines,

six of the ten problem instances were solved by the cutting plane approach (in 1260 seconds on

average). One may say that the corresponding performance of the direct CPLEX approach is

abysmal: none of these 20 instances are solved to optimality within two hours. Even in problems

where both methods fail to produce an optimal solution within two hours of CPU time, it can be

seen that the cutting plane approach is able to close the optimality gap to a much greater extent

than direct CPLEX, uniformly across all 20 instances.

17

5.3 Comparison on pre-existing problem instances in the literature

In this section, we apply the method developed in this paper on problem R‖prec‖Cmax. Problem

instances were obtained from Coll et al. (2006). That work reports the lower bound obtained using

their method. However, it does not report the computational time to obtain the lower bound.

The authors report a large number of problem instances that are as yet unsolved where there is

a non-zero gap between their lower bound and the best known heuristic solution. The authors

classify problems into small instances and large instances. The small instances contain up to 25

jobs. There were 27 unsolved such instances. To the best of our knowledge, we are the first to

report optimal solutions on 18 of these 27 problems (See Table 8.) For many of these problem

instances, in addition to proving optimality, our optimal solution was also better than the best

known heuristic solutions. Two of the problems reported remain unsolved even after 2 hours of

computational time, yet the final heuristic solution is better than that known in the literature. For

the 7 unreported problems, the final heuristic solution (the solution is heuristic since computation

did not complete even after 2 hours) did not improve on the best reported solution in Coll et al.

(2006).

Table 8: Comparison with benchmark instances of R‖prec‖Cmax

Instance Optimal Solution1 Time (in secs.) Nodes

v.22.8.5 15∗ 1434 141,918

f.14.8.5 13 25 0

f.14.4.5 13 101 0

d.25.8.5 20∗ 72002 319,833

d.25.4.5 20∗ 72002 293,120

d.25.8.2 14∗ 202 0

d.25.4.2 14∗ 493 23,791

f.14.8.2 8 29 0

v.22.8.10 18∗ 2186 133,643

v.22.8.2 10∗ 81 0

d.25.8.10 23∗ 1884 102,023

d.25.4.10 23∗ 1976 178,563

g.23.4.2 13 3855 102,141

f.14.2.5 13 7 0

r.24.8.5 18 1429 85,502

r.24.4.5 18 1124 135,171

i.22.4.10 19∗ 1589 145,858

r.24.8.10 20∗ 204 18,097

g.23.8.10 21 3492 641,356

d.25.2.10 24 5031 1,710,581

∗ - New solution

1 - Solution is optimal only if Time (in secs.) is less than 7200, else it is heuristic

2 - Problem unsolved even after 2 hours of computational time

18

6 Conclusion

The contribution of this paper is two-fold. First, a novel compact MIP formulation was provided

for problem R‖prec‖
∑

j WjCj in scheduling literature. This problem of minimizing weighted com-

pletion time on unrelated machines and arbitrary job precedence constraints is a very general

scheduling problem that captures a variety of other scheduling problems as a special case. Sec-

ondly, for this formulation, a large number of classes of valid inequalities were reported. These

inequalities play a significant role in helping to solve problem instances with up to 25 jobs and 5

machines. In comparison, solving these problems optimally using CPLEX directly on [MIP] was

not possible within a two-hour time limit. Quick improvement of the lower bound in the branch-

and-bound tree is a major challenge in solving this class of problems optimally. The inequalities

presented in this article lead to an improvement in the lower bound from 85.3% to 92.3% of the

optimal solution Z∗ on the most difficult problem instances, leading to a decrease in the number

of branch-and-bound nodes explored within CPLEX, and the resulting computational time. The

average improvement in the lower bound across all 40 problem instances in Tables 2 through 5 is

from 89.3% to 94.6% of Z∗.

The problem sizes on which optimal solutions have been reported in our work (i.e., up to 25

jobs) are more than twice the size of problems for which optimal solutions have been reported

in related literature. For even larger problem sizes, discovery of newer classes of inequalities and

possibly facet-defining inequalities are imperative. Since the problem considered is quite general,

it will be worthwhile to see if any of the inequalities reported in our work can be tightened for

specialized problems.

Acknowledgements

The authors would like to thank the authors of Coll et al. (2006) for sharing problem instances

reported in their work. All of the problem instances on which solutions have been reported in our

paper have been made available as an online supplement. We also thank the editor and the two

anonymous referees whose comments helped improve the contribution of the paper.

References

Agarwal, Y.K. 2018. Network Loading Problem: Valid Inequalities from 5-and Higher Partitions.

Computers & Operations Research. 99. 123–134.

Afzairad, M., J. Rezaeian. 2016. Resource-constrained unrelated parallel machine scheduling prob-

lem with sequence dependent setup times, precedence constraints and machine eligibility restric-

tions. Computers and Industrial Engineering. 98. 40-52.

19

Arroyo, J.E.C., J.Y.-T. Leung. 2017a. An effective iterated greedy algorithm for scheduling unre-

lated parallel batch machines with non-identical capacities and unequal ready times. Computers

and Industrial Engineering. 105. 84-100.

Arroyo, J.E.C., J.Y.-T. Leung. 2017b. Scheduling unrelated parallel batch processing machines with

non-identical job sizes and unequal ready times. Computers & Operations Research. 78. 117-128.

Balas, E. 1985. On the facial structure of scheduling polyhedra. Mathematical Programming Study.

24. 179–218.

Che, A., S. Zhang, X. Wu. 2017. Energy-conscious unrelated parallel machine scheduling under

time-of-use electricity tariffs. Journal of Cleaner Production. 156. 688–697.

Chen, Z-L., W.B. Powell. 1999. Solving parallel machine scheduling problems by column generation.

INFORMS Journal on Computing 11.1. 78–94.

Cheng, C.-Y., L.W. Huang. 2017. Minimizing total earliness and tardiness through unrelated paral-

lel machine scheduling using distributed release time control. Journal of Manufacturing Systems.

42. 1-10.

Coll, P.E., C.C. Ribeiro, C.C. de Souza. 2006. Multiprocessor Scheduling Under Precedence Con-

straints: Polyhedral Results. Discrete Applied Mathematics. 154. 770–801.

Correia, I., L.L. Lourenço, F. Saldanha-da-Gama. 2012. Project Scheduling with Flexible Resources:

Formulation and Inequalities. OR Spectrum. 34. 635–663.

de Farias Jr, I.R., H. Zhoa, M. Zhao. 2010. A family of inequalities valid for the robust single

machine scheduling polyhedron. Computers & Operations Research. 37. 1610–1614.

Dyer, M.E., L.A. Wolsey. 1990. Formulating the single machine sequencing problem with release

dates as a mixed integer program. Discrete Applied Mathematics. 26. 255-270.

Fanjul-Peyro, L., F. Perea, R. Ruiz. 2017. Models and matheuristics for the unrelated parallel

machine scheduling problem with additional resources. European Journal of Operatonal Research.

260. 482-493.

Graham, R.L., E.L. Lawler, J.K. Lenstra, A.H.G. Rinnoy Kan. 1979. Optimization and approxi-

mation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics.

5. 287-326.

Hassan, M.A., I. Kacem, S. Martin, I.M. Osman. 2016. Unrelated Parallel Machine Scheduling

Problem with Precedence Constraints: Polyhedral Analysis and Branch-and-Cut. Combinatorial

Optimization: 4th International Symposium, ISCO 2016. 308–319.

20

Herrmann, J., J.-M. Proth, N. Sauer. 1997. Heuristics for unrelated machine scheduling with prece-

dence constraints. European Journal of Operational Research. 102. 528-537.

Joo, C.M., B.S. Kim 2017. Rule-based meta-heuristics for integrated scheduling of unrelated parallel

machines, batches, and heterogeneous delivery trucks. Applied Soft Computing. 53. 457-476.

Kolisch, R., A. Sprecher. 1997. PSPLIB-a project scheduling problem library: OR software-ORSEP

operations research software exchange program. European Journal of Operational Research. 96.1.

205–216.

Kumar, V.S.A., M.V. Marathe, S. Parthasarathy, A. Srinivasan. 2009. Scheduling on Unrelated

Machines under Tree-Like Precedence Constraints. Algorithmica. 55. 205-226.

Liu, C. 2013. A Hybrid Genetic Algorithm to Minimize Total Tardiness for Unrelated Parallel

Machine Scheduling with Precedence Constraints. Mathematical Problems in Engineering. Article

ID 537127.

Liu, C., S. Yang. 2011. A heuristic serial schedule algorithm for unrelated parallel machine schedul-

ing with precedence constraints. Journal of Software. 6(6). 1146-1153.

Mokotoff, E. 2001. Parallel machine scheduling problems: A survey. Asia-Pacific Journal of Oper-

ational Research. 18.2. 193–242.

Mokotoff, E. 2004. An exact algorithm for the identical parallel machine scheduling problem. Eu-

ropean Journal of Operational Research 152.3 (2004): 758–769.

Mokotoff, E., P. Chrétienne. 2002. A Cutting Plane Algorithm for the Unrelated Parallel Machine

Scheduling Problem. European Journal of Operational Research. 141. 515–525.

Nishi, T., Y. Hiranaka. 2013. Lagrangian relaxation and cut generation for sequence-dependent

setup time flowshop scheduling problems to minimise the total weighted tardiness. International

Journal of Production Research. 51(16). 4778-4796.

Nishi, T., Y. Hiranaka, M. Inuiguchi. 2010. Lagrangian relaxation with cut generation for hybrid

flowshop scheduling problems to minimize the total weighted tardiness. Computers & Operations

Research. 37. 189-198.

Olagúıel,R.S.-V., J.M.T. Goerlich 1993. The project scheduling polyhedron: Dimension, facets, and

lifting theorems. European Journal of Operational Research. 67. 204-220.

Potts, C.N. 1985. A Lagrangean based branch and bound algorithm for single machine sequencing

with precedence constraints to minimize total weighted completion time. Management Science.

31.10: 1300–1311.

21

Queyranne, M. 1993. Structure of a simple scheduling polyhedron. Mathematical Programming. 58.

263–285.

Queyranne, M., Y. Wang. 1991. Single-machine scheduling polyhedra with precedence constraints.

Mathematics of Operations Research. 16(1). 1-20.

Schulz, A.S. 1995. Scheduling to minimize total weighted completion time: Performance guarantees

of LP-based heuristics and lower bounds. International Conference on Integer Programming and

Combinatorial Optimization. Springer, Berlin, Heidelberg.

Shahvari, O., R. Logendran. 2017. An Enhanced tabu search algorithm to minimize a bi-criteria

objective in batching and scheduling problems on unrelated-parallel machines with desired lower

bounds on batch sizes. Computers & Operations Research. 77. 154-176.

Sitters, R. 2017. Approximability of average completion time scheduling on unrelated machines.

Mathematical Programming Series A. 161. 135-158.

Smith, W.E. 1956. Various optimizer for single-stage production. Naval Research Logistics Quarterly

3:59–66.

Šorić, K. 2000. A cutting plane algorithm for a single machine scheduling problem. European

Journal of Operational Research. 127. 383–393.

Szmerekovsky, J.G. 2003. Maximizing Project Net-Present Value and Minimizing Work-in-Progress

Costs in Projects. Case Western Reserve University, Cleveland, Ohio.

Tavakkoli-Moghaddan, R., F. Taheri, M. Bazzazi, M. Izadi, F. Sassani 2009. Design of a genetic

algorithm for bi-objective unrelated parallel machines scheduling with sequence-dependent setup

times and precedence constraints. Computers & Operations Research. 36. 3224-3230

Woo, Y.-B., S. Jung, B.S. Kim. 2017. A rule-based genetic algorithm with an improvement heuris-

tic for unrelated parallel machine scheduling problem with time-dependent deterioration and

multiple rate-modifying activities. Computers and Industrial Engineering. 109. 179-190.

7 Appendix A: More Valid Inequalities

In this section, nine different classes of valid inequalities are presented. While inclusion of these

inequalities did not help improve lb1, these inequalities play a significant role in fathoming the

branch-and-bound tree quicker; refer to Section 5.1 for empirical evidence. Additional notation is

now introduced that is needed to describe these inequalities.

Derived Values

22

MinCk(S): a lower bound on the sum of completion times of jobs in set S, all scheduled to be

processed on k

fthrk(i, j, i
′
): directed flowthrough (defined below) on k along i→ j → i

′

InActivitykj :
N∑

i=0,i 6=j

xkij , denoting the total flow into job j on k

Flowthrough, fthrk(i, j, i
′
), denotes a lower bound on the “flow” (as defined by the x variables)

originating at i and reaching i
′

via j. This is calculated as fthrk(i, j, i
′
) = xkij −

N+1∑
h=1,h 6=i,h 6=i′

xkjh.

Intuitively, this captures the “incoming” flow at j from i, reduced by the amount of flow that leaves

j but does not go to i
′
.

Inequality class 1

Consider machine k and a subset S ⊆ N of s jobs that complete on k. Then, the following

inequality holds:

∑
i∈S

Ci ≥MinCk(S)
[∑
i∈S

N∑
h=0,h6=i

xkhi − s+ 1
]

The validity of the inequality stems from the fact that in an integral solution, the right-hand side

of the inequality equals MinCk(S) if the jobs in S are scheduled on machine k, and negative

otherwise.

Computing MinCk(S) is based on the following observation. Given a set of jobs, i1, . . . , is,

re-indexed if necessary such that pki1 ≤ . . . ≤ pkis , a lower bound on the sum of their completion

times on machine k is pki1 + (pki1 + pki2) + . . .+ (pki1 + pki2 + . . .+ pkis−1 + pkis).

Inequality class 2

If h succeeds j in G, then, for a machine k, the following inequality holds:

N∑
i=0,i 6=j

xkij ≤ 1− xk0h

The validity of the inequality stems from the fact that if h is scheduled to be processed first on k,

the right-hand side is 0. The left-hand side of the inequality, InActivitykj , cannot be positive as j

cannot be scheduled on k as j should complete before h’s start.

Inequality class 3

Consider triplet h, i, j ∈ N , each job distinct, and two distinct machines k1 and k2. Then, the

following inequality holds:

xk1hi + xk1ih + xk2hj + xk2jh ≤ 1

23

The validity of the inequality follows from the fact that if xk1hi = 1, i is scheduled on k1 immediately

after h. This precludes the possibility of h being scheduled after i, or of j being scheduled after h

on k2 or of h being scheduled after j on k2. Other cases are similarly proven.

Inequality class 4

Consider pair i, j ∈ N , each job distinct, and two distinct machines k1 and k2. The following

inequality holds:

xk1ij + xk1ji +

N∑
h=0,h6=j

xk2hj ≤ 1

The validity of this inequality is proven along similar lines to that of Inequality 3.

Inequality class 5

Consider distinct jobs i, j ∈ N . Then, the following inequality holds:

∑
k∈K

xkij +
∑
k∈K

xkji ≤ 1

The validity of this inequality follows since if i immediately precedes j on a machine k, then neither

can j immediately precede i on any machine, nor can i immediately precede j on machine other

than k.

Inequality class 6

Consider j ∈ N and k. The following inequality holds:

N∑
i=0,i 6=j

V k
ij + pkj

N∑
i=0,i 6=j

xkij ≤
N+1∑

i=1,i 6=j

V k
ji

In a feasible integer solution, the left-hand side is the sum of the completion time of job i that

immediately precedes j in a schedule, both on k and the processing time of j. The right-hand side

denotes the actual completion time of j on machine k. This proves the validity of the inequality.

Inequality class 7

Consider the case where fthrk(i, j, i
′
) = 1. In this case, the lower bound on the completion

time of i
′

can be updated to C = max(MinCT k(i
′
), pki + pkj + pk

i′
). Then, for h /∈ {i, j, i′}, the

following inequality holds:

V k
i′h
≥ (C −MinCT k(i

′
))(fthrk(i, j, i

′
)− 1) + Cxk

i′h

To prove the validity of this inequality, first note that in a feasible solution, the possible values of

fthrk(i, j, i
′
) can be 1, 0 or -1. If fthrk(i, j, i

′
) = 1, then V k

i′h
= Ci′x

k
i′h
≥ Cxk

i′h
. If fthrk(i, j, i

′
) =

0, the right-hand side of the inequality becomes MinCT k(i
′
)−C(1−xk

i′h
). If xk

i′h
= 1, the inequality

simplifies to Ci′ ≥ MinCT k(i
′
). If xk

i′h
= 0, the right-hand side is non-positive and the inequality

is trivially true. The case where fthrk(i, j, i
′
) = −1 follows along similar lines.

24

Inequality class 8

Consider i, and j that is either independent of i or succeeds i in G. If xkij = 1 for some k, then

V k
ij ≥MinCT (i), by virtue of definition of MinCT (i). If, however, j does not immediately succeed

i on any machine,
∑
k∈K

N+1∑
i′=1,i′ 6=j

xk
ii′

= 1. This proves the validity of the following inequality.

∑
k∈K

V k
ij +MinCT (i)

(∑
k∈K

N+1∑
i′=1,i′ 6=j

xk
ii′

)
≥MinCT (i)

Inequality class 9

Consider distinct i, j, i
′ ∈ N such that (i, i

′
) ∈ E and (j, i

′
) ∈ E. For machine k, the following

inequality holds:

Ci′ − Ci ≥ Pmin
i′

+ pkjx
k
ij

Note that if xkij = 1, earliest that i
′

can start is Ci + pkj , proving the validity of the inequality.

In the computational tests, a generalized version of this inequality is used. The generalization is

the case where (i, h) ∈ E, (h, i
′
) ∈ E, (j, j

′
) ∈ E and (j

′
, i
′
) ∈ E. In this case, the inequality

becomes C
′
i −Ci ≥ Pmin(i

′
) +Max{pkj +Pmin(j

′
), Pmin(h)}xkij . Further generalization is possible

by considering predecessors that are 3 or more levels above i
′
, but computationally that did not

provide significantly better improvement.

25

